階段関数
- 定数関数は自明な階段関数である。階段関数の定義において、n = 1, A1 = R として得られる。
- ヘヴィサイドの階段関数は、しばしば応用に用いられる重要な階段関数である。n = 3, A1 = (-∞ 0), A2 = [0, 0], A3 = (0, ∞) として得られる。
- 矩形関数は、R を5つの区間に分けて得られる階段関数である。
性質
階段関数のとる値は、有限個の可能性しかない。階段関数の定義において、区間 Ai たちを互いに素な R の分割にとっておけば、Ai の任意の元 x に対して f(x) = αi となる。
階段関数
のルベーグ積分は、区間 Ai の長さ L (Ai) が全て有限である場合、
で与えられる。
2つの階段関数の和や積もまた階段関数である。この演算により、階段関数全体の集合は R 上の代数を成す。
関連項目
- 階段函数のページへのリンク