純正律を超えて
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2022/06/14 20:22 UTC 版)
平均律においては、純正律の単純な比は、近似する無理数に変換される。この操作は、うまくいけば、さまざまな音程間の和声の相対的な複雑さ自体を変えることはないが、和音の限界の計算はより困難になる。この場合、まず近似元になっている有理数音程を判定してから、奇数限界や素数限界を計算する必要がある。ただし、和音の中には、有効な純正律の調律が複数ある和音もある(12平均律の減七和音など)ので、この方法でうまくいくとは限らない。
※この「純正律を超えて」の解説は、「限界 (音楽)」の解説の一部です。
「純正律を超えて」を含む「限界 (音楽)」の記事については、「限界 (音楽)」の概要を参照ください。
- 純正律を超えてのページへのリンク