敵対的生成ネットワークとは? わかりやすく解説

Weblio 辞書 > 辞書・百科事典 > デジタル大辞泉 > 敵対的生成ネットワークの意味・解説 

てきたいてき‐せいせいネットワーク【敵対的生成ネットワーク】

読み方:てきたいてきせいせいねっとわーく

ガンGAN


敵対的生成ネットワーク

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2024/09/14 00:21 UTC 版)

データサイエンス > 機械学習 > 教師なし学習 > 生成モデル > 敵対的生成ネットワーク

敵対的生成ネットワーク (てきたいてきせいせいネットワーク、: Generative adversarial networks、略称: GANs)は、2014年にイアン・グッドフェローらによって発表された教師なし学習で使用される人工知能アルゴリズムの一種であり、ゼロサムゲームフレームワークで互いに競合する2つのニューラルネットワークのシステムによって実装される[1]

概要

GANsは生成ネットワーク(generator)と識別ネットワーク(discriminator)の2つのネットワークから構成される。例として画像生成を目的とするなら生成側がイメージを出力し、識別側がその正否を判定する。生成側は識別側を欺こうと学習し、識別側はより正確に識別しようと学習する。このように2つのネットワークが相反した目的のもとに学習する様が敵対的と呼称される所以である。

ヤン・ルカンは、GANsについて、「機械学習においてこの10年間で最も興味深いアイデア」("This, and the variations that are now being proposed is the most interesting idea in the last 10 years in ML, in my opinion.")と評価している[2]

データ拡張

GANの学習は不安定で膨大な量のデータを必要とする。その安定性を高めまたデータ量を補い汎化性能を高めるために、GANにおいてもデータ拡張が利用される。

ただしDiscriminator/Critic側のみにデータ拡張を行うとむしろ性能が低下することが知られている[4]。これはDがデータ拡張の有無を判別に用いてしまい、それを騙すためにGがデータ拡張を模倣した出力を生成してしまうためと考えられている。これを避けるため、Generator出力にもデータ拡張を行うことで有効なデータ拡張が可能になる[5]

応用例

  • アニメーションや実写風のイラストを自動生成[6]
  • 実際に正装していなくても、身だしなみが整っているように会議に参加[7]
  • サイバーセキュリティを向上させるためのデータの匿名化[8]

出典

  1. ^ Salimans, Tim; Goodfellow, Ian; Zaremba, Wojciech; Cheung, Vicki; Radford, Alec; Chen, Xi (2016). "Improved Techniques for Training GANs". arXiv:1606.03498 [cs.LG]。
  2. ^ Quora”. 2020年5月19日閲覧。
  3. ^ a b Zhengli Zhao, Zizhao Zhang, Ting Chen, Sameer Singh, Han Zhang: “Image Augmentations for GAN Training”, 2020; arXiv:2006.02595.
  4. ^ "We find augmenting only real images in GANs worsens the FID regardless of the augmentation strengths or strategies."[3]
  5. ^ "we conclude that augmenting both real and fake images can substantially improves the generation performance of GAN."[3]
  6. ^ Setiadi, Iskandar (2019年5月24日). “Demystifying Machine Learning with Anime Characters Recognition” (英語). henngeblog. 2023年8月2日閲覧。
  7. ^ An AI App Allows Users to Dress in Digital Costumes” (英語). An AI App Allows Users to Dress in Digital Costumes (2020年12月2日). 2023年12月9日閲覧。
  8. ^ Generative Adversarial Networks (GANs)”. Coursera. 2024年1月23日閲覧。

参考文献

関連記事


敵対的生成ネットワーク

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2022/03/23 09:35 UTC 版)

ニューラルネットワーク」の記事における「敵対的生成ネットワーク」の解説

敵対的生成ネットワーク (Generative Adversarial Network, GAN) とは、ガウシアン等の確率分布から得られノイズネットワークA (Generator) がデータ変換しネットワークBが母集団からサンプリングされたデータネットワークAの出力見分けるように学習するモデルである。DCGANやStyleGAN、BigGANがその例である。

※この「敵対的生成ネットワーク」の解説は、「ニューラルネットワーク」の解説の一部です。
「敵対的生成ネットワーク」を含む「ニューラルネットワーク」の記事については、「ニューラルネットワーク」の概要を参照ください。

ウィキペディア小見出し辞書の「敵対的生成ネットワーク」の項目はプログラムで機械的に意味や本文を生成しているため、不適切な項目が含まれていることもあります。ご了承くださいませ。 お問い合わせ


英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「敵対的生成ネットワーク」の関連用語

敵対的生成ネットワークのお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



敵対的生成ネットワークのページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
デジタル大辞泉デジタル大辞泉
(C)Shogakukan Inc.
株式会社 小学館
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアの敵対的生成ネットワーク (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。
ウィキペディアウィキペディア
Text is available under GNU Free Documentation License (GFDL).
Weblio辞書に掲載されている「ウィキペディア小見出し辞書」の記事は、Wikipediaのニューラルネットワーク (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。

©2025 GRAS Group, Inc.RSS