区間 (数学)とは? わかりやすく解説

Weblio 辞書 > 辞書・百科事典 > 百科事典 > 区間 (数学)の意味・解説 

区間 (数学)

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2024/12/25 16:38 UTC 版)

閉区間 [a, b] = {xR | axb}
開区間 (a, b) = {xR | a < x < b}

数学における(区間(じつくかん、: (real) interval)は、実数全体 R部分集合 I であって任意の実数 x, yIzR について x < z < y ならば zI という条件を満たすものである[1][2]。例えば、区間 [a, b] は axb を満たす実数 x 全体からなる集合であり、この場合は ab の両方を含む区間である。他の例として、実数全体の成す集合 R, 負の実数全体の成す集合, 一点集合, 空集合なども区間といえる。

実数に限らず、勝手な全順序集合(例えば整数の集合や有理数の集合)上でも区間の概念は定義できる[2]

実区間は積分および測度論において、「大きさ」「測度」「長さ」などと呼ばれる量を容易に定義できるもっとも単純な集合として重要な役割がある。測度の概念は実数からなるより複雑な集合に対して拡張され、ボレル測度ルベーグ測度といったような概念までにつながっていく。

不確定性や数学的近似および算術的丸めがあっても勝手な公式に対する保証された一定範囲を自動的に与える一般の数値計算英語版法としての区間演算を考えるにあたって、区間はその中核概念を成す。

用語と表記

端点 (endpoints)
区間の最小値と最大値を示す2つの値で、 [a, b] などのようにコンマ区切りで表記する。小数点にコンマを用いる国や桁の区切りにコンマを用いるような場合などでは、紛れの無いよう端点の区切りにセミコロンを用いることもある。
開/閉
  • 端点を含まないことを開含むことを閉とする様々な表現がある。両端とも閉じて(開いて)いる区間を閉区間(開区間)といい、片側だけ開いていれば半開区間、より具体的に左開右閉などと言い表すこともある。これらは実数直線における通常の位相に関する開集合系、閉集合系とちょうど一致する。
  • 区間の開閉を表記する際、閉じている側は角括弧を用いる。開いている側は丸括弧に変える記法と角括弧を逆向きにする記法が国際規格ISO 31-11に記載されている(以下、集合の内包的記法英語版に基づく)。
閉区間
この節には参考文献や外部リンクの一覧が含まれていますが、脚注によって参照されておらず、情報源が不明瞭です 脚注を導入して、記事の信頼性向上にご協力ください。2019年6月

外部リンク



このページでは「ウィキペディア」から区間 (数学)を検索した結果を表示しています。
Weblioに収録されているすべての辞書から区間 (数学)を検索する場合は、下記のリンクをクリックしてください。
 全ての辞書から区間 (数学) を検索

英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「区間 (数学)」の関連用語

区間 (数学)のお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



区間 (数学)のページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアの区間 (数学) (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。

©2025 GRAS Group, Inc.RSS