ロトカ・ヴォルテラの方程式
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2021/07/12 17:08 UTC 版)
ナビゲーションに移動 検索に移動
ロトカ・ヴォルテラの方程式(ロトカ・ヴォルテラのほうていしき、英語: Lotka-Volterra equations)とは、生物の捕食-被食関係による個体数の変動を表現する数理モデルの一種。2種の個体群が存在し、片方が捕食者、もう片方が被食者のとき、それぞれの個体数増殖速度を二元連立非線形常微分方程式系で表現する。ロトカ・ヴォルテラの捕食式やロトカ・ヴォルテラ捕食系、ロトカ-ヴォルテラの捕食者-被食者モデルなどとも呼ばれる[1][2][3]。
具体的には以下の方程式で表される[4]。
モデルの連立方程式内の
-
捕食者の個体数増殖速度 dy/dt は
-
どのようなときに、個体数 x, y が増えも減りもしない、つまり時間 t の経過によらず変化しない状態になるかについて考える。これは、方程式の dx/dt と dy/dt がともに 0 ということなので、次式が得られる。
-
1) 解曲線は、y = a/b の直線より上側領域では左向きに進み、下側領域では右向きに進む
保存量
ロトカ・ヴォルテラの方程式は力学系における保存系に該当し、保存量と呼ばれる量を持つ[23]。式から微分 dx/dy を求めると、
-
解曲線は平衡点 (d/c, a/b) を周回する閉曲線となっており、1つの閉曲線が一意の保存量を持つ。初期値によってどの閉曲線となるかが決定される
上記のアイソクライン法による解析だけでは、解曲線の形状は確定しない。解曲線は、平衡点 (d/c, a/b) を中心に反時計回りに回転していることは分かったが、平衡点を中心としてそこから離れていく渦巻形状なのか、逆に平衡点へ近づいていく渦巻形状なのか、あるいは円や楕円のように一周して元の点に戻る閉曲線なのか、などの可能性がある[42]。ロトカ・ヴォルテラの方程式の解は、これらの中の閉曲線に該当し、相平面の第一象限上で解曲線は平衡点 (d/c, a/b) を中心にして一周する閉じた軌道を描く。これは、前述の保存量 H の存在などから証明される[41]。
解曲線の形状は、純粋な円や楕円というよりは卵のような形となっている[43]。どの大きさの軌道を取るかは、被食者 x と捕食者 y の初期値 x0, y0 によって決まる[42]。保存量 H の値は初期値 x0, y0 によって決まり、H の各値に1つの閉曲線が対応する[37]。さらに、x と y の1周期中の平均量を計算すると、それらの値は、それぞれの平衡点 d/c と a/b に一致する[44]。
解曲線が閉じた曲線であることは、被食者と捕食者の個体数は一定周期で振動していることも意味する[45]。個体数の時間発展波形は複雑な形状となる[46]。捕食者と被食者の個体数変動の位相は1/4周期ほどずれており、
- 被食者増加後に、捕食者増加
- 捕食者増加後に、被食者減少
- 被食者減少後に、捕食者減少
- 捕食者減少後に、被食者増加
という変動の繰り返しを示す[36]。
個体数の範囲を平衡点近傍に限り、線形安定解析によって近似的な解析を行えば、それぞれの個体数変動の振動数を得ることもできる[47]。このときの x と y は、上記の保存量 H と同じように、次のような関係で表される[48]。
-
ヴィト・ヴォルテラ (Vito Volterra)
イタリアの生態学者ウンベルト・ダンコナ(Umberto D'Ancona) は、漁業操業が低下した第一次世界大戦中に食用魚よりもサメなどの軟骨魚の年間漁獲率が増加したことに疑問を持った[55]。これについてヴィト・ヴォルテラに相談を持ち掛け、ヴォルテラがこの現象を説明するためのモデル作成に取り組んだことが、ヴォルテラがロトカ・ヴォルテラの方程式を発案したきっかけである[56][55]。
ヴォルテラは、食用魚が被食者、軟骨魚が捕食者としてモデル(ロトカ・ヴォルテラの方程式)を作成した[57]。上記で説明したように、被食者の平均個体数は d/c で、捕食者の平均個体数は a/b である。漁業操業が行われており食用魚も軟骨魚も漁獲されているとすると、その効果は食用魚自然増加率の a を小さくして、軟骨魚自然減少率の d を大きくするように働くと考えることができる[58]。通常の操業量からある時期から操業量が低下したとする。これによって、通常の操業状態と相対的にみると、 a が大きくなり、 d が小さくなったということになる。したがって操業量低下により、被食者の平均個体数は減少し、捕食者の平均個体数が増加するということになる。これがダンコナの疑問に対するヴォルテラの説明である[59]。
周期的変動の例
ロトカ・ヴォルテラの方程式で示された、被食者と捕食者の個体数が位相差を持ちながら一定振動を続ける振る舞いに近いといえる例は、実際の生物においていくつか確認されている。
野外環境における例としては、カナダにおいて、カンジキウサギ[注釈 2]とその捕食者であるカナダオオヤマネコの個体数が長期間にわたって振動していたデータがよく挙げられる[61][62]。2つの個体数振動は、周期はほぼ同じで、位相は少しずれている[60]。ただし、このデータは個体数を直接観測したものではなく、毛皮取引を行っていたハドソン湾会社による1845年から1935年までのカンジキウサギとカナダオオヤマネコの毛皮捕獲記録から、間接的に生息個体数を推定したものである[63]。また、1973年のギルピン(M. E. Gilpin) による解析によれば、これらの個体数変動を相平面上にプロットすると軌道が時計回りとなっており、カンジキウサギがカナダオオヤマネコを捕食していると解釈できる奇妙な結果となっている[63]。
環境を制御した飼育実験における例としては、ハフェイカー(C. B. Huffaker) によるコウノシロハダニとその捕食者であるカブリダニによる飼育実験、内田俊郎によるアズキゾウムシとその寄生者であるコマユバチによる飼育実験のデータが挙げられる[64][61]。ハフェイカーの実験では、単純な環境だと捕食が早すぎてどちらかの絶滅が起きてしまった。そのため、橋を設けたり扇風機を回したり環境を複雑にすることで、長期間にわたってそれぞれの個体数が振動しながら共存するデータを得ている[64]。
モデルの改良
現実にある多くの系を考えると、ロトカ・ヴォルテラの方程式
-
ウィキメディア・コモンズには、ロトカ・ヴォルテラの方程式に関連するカテゴリがあります。
- Weisstein, Eric W. "Lotka-Volterra Equations". MathWorld (英語).
- Predator-prey model (英語) - スカラーペディア百科事典「捕食者-被食者モデル」の項目。Lotka-Volterra Modelについての説明も含む。
- 法則の辞典『ロトカ‐ヴォルテラの式』 - コトバンク
-
-
-
-
ロトカ・ヴォルテラの方程式と同じ種類の言葉
方程式に関連する言葉 | NS方程式 ペル方程式 ロトカヴォルテラの方程式 LAGRANGE方程式 フレネル方程式 |
- ロトカ・ヴォルテラの方程式のページへのリンク