ファレイ数列とは? わかりやすく解説

Weblio 辞書 > 同じ種類の言葉 > 人文 > 高等数学 > 数列 > ファレイ数列の意味・解説 

ファレイ数列

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2023/04/16 18:42 UTC 版)

数学で、ファレイ数列(ファレイすうれつ、フェアリー数列[1]とも, Farey sequence [ˈfɛəri -]) とは、既約分数を順に並べた一群の数列であり、以下に述べるような初等整数論における興味深い性質を持つ。 正確にいえば、

自然数 n に対して、n に対応する(または、属する)ファレイ数列 (Farey sequence of order n) Fn とは、分母n 以下で、 0 以上 1 以下の全ての既約分数を小さい順から並べてできる有限数列である。 ただし、整数 0, 1 はそれぞれ分数 0/1, 1/1 として扱われる。

定義によっては 0, 1 は数列から省かれる場合もある。 なお、英語では Farey series と呼ばれることも多いが、series級数)の定義からいえば厳密には誤りである。

ファレイ数列 Fn は、具体的に n = 1, …, 8 のとき次のようになる[2]

F1 = (0/1, 1/1)
F2 = (0/1, 1/2, 1/1)
F3 = (0/1, 1/3, 1/2, 2/3, 1/1)
F4 = (0/1, 1/4, 1/3, 1/2, 2/3, 3/4, 1/1)
F5 = (0/1, 1/5, 1/4, 1/3, 2/5, 1/2, 3/5, 2/3, 3/4, 4/5, 1/1)
F6 = (0/1, 1/6, 1/5, 1/4, 1/3, 2/5, 1/2, 3/5, 2/3, 3/4, 4/5, 5/6, 1/1)
F7 = (0/1, 1/7, 1/6, 1/5, 1/4, 2/7, 1/3, 2/5, 3/7, 1/2, 4/7, 3/5, 2/3, 5/7, 3/4, 4/5, 5/6, 6/7, 1/1)
F8 = (0/1, 1/8, 1/7, 1/6, 1/5, 1/4, 2/7, 1/3, 3/8, 2/5, 3/7, 1/2, 4/7, 3/5, 5/8, 2/3, 5/7, 3/4, 4/5, 5/6, 6/7, 7/8, 1/1)

性質

隣接する分数と中間数

2 つの分数 a/bc/d が、あるファレイ数列で隣接しているならば、この 2 つの分数の間に新たな分数が加わるのは次数 b + d のファレイ数列においてであり、それは a/b, c/d中間数英語版: mediant)と呼ばれる分数、

a + c/b + d

である。 例えば、F5 では隣接している 1/32/5 の間に現れる最初の項は F83/8 である。

0/1, 1/1 から中間数を繰り返し取ることによって得られる 1 から 8 までに対応するファレイ数列

もし a/bc/d が、あるファレイ数列でこの順で隣接するなら、その差は bcad/bd となるが、ファレイ数列の隣接する分数では bcad = 1 が成立し、差は分母の積の逆数 1/bd に等しくなる。 例えば、1/32/5 の差は 1/15 である。この逆もまた真となる。 もし 0 ≤ a/b < c/d ≤ 1 であるような負でない整数 a, c と正の整数 b, d に対し、bcad = 1 が成り立つならば、a/bc/d は、max {b, d} に対応するファレイ数列において隣接する。

なお、シュターン=ブロコ木英語版(スターン=ブロコット木、: Stern–Brocot tree)として知られている木構造は、0 = 0/1 と便宜的な無限大の表現 1/0 から始め、中間数を繰り返し取ることによって 0 以上の既約分数列を作り上げる方法を示すものであり、ファレイ数列と密接な関係がある。

連分数

ファレイ数列で隣接する分数は連分数展開と密接な関係がある。

全ての分数は最後の項が 1 となるように連分数展開を行うことができる。 例えば、3/8 のこのような連分数展開は、

フォードの円

ファレイ数列とフォードの円 (en:Ford circle) との間にも面白い関係がある。

任意の既約分数 p/q に対して、フォードの円 C[p/q] は中心が平面座標


ウィキペディアウィキペディア

ファレイ数列

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2018/10/27 20:57 UTC 版)

Mertens 関数」の記事における「ファレイ数列」の解説

Mertens関数はファレイ数列を使い以下のようにも表せる。 M ( n ) = ∑ a ∈ F n e 2 π i a {\displaystyle M(n)=\sum _{a\in {\mathcal {F}}_{n}}e^{2\pi ia}} ( F n {\displaystyle {\mathcal {F}}_{n}} は、オーダーnのファレイ数列) この公式はFranel–Landau theoremの証明使われます

※この「ファレイ数列」の解説は、「Mertens 関数」の解説の一部です。
「ファレイ数列」を含む「Mertens 関数」の記事については、「Mertens 関数」の概要を参照ください。

ウィキペディア小見出し辞書の「ファレイ数列」の項目はプログラムで機械的に意味や本文を生成しているため、不適切な項目が含まれていることもあります。ご了承くださいませ。 お問い合わせ



ファレイ数列と同じ種類の言葉


英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

カテゴリ一覧

すべての辞書の索引



Weblioのサービス

「ファレイ数列」の関連用語





5
14% |||||






ファレイ数列のお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



ファレイ数列のページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアのファレイ数列 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。
ウィキペディアウィキペディア
Text is available under GNU Free Documentation License (GFDL).
Weblio辞書に掲載されている「ウィキペディア小見出し辞書」の記事は、WikipediaのMertens 関数 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。

©2025 GRAS Group, Inc.RSS