カー・パリネロ法で必要な近似、手法、道具
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2018/07/08 19:49 UTC 版)
「カー・パリネロ法」の記事における「カー・パリネロ法で必要な近似、手法、道具」の解説
上述のように、最急降下法、共役勾配法、RMM-DIIS法などを使って、波動関数の更新(電子状態部分の計算)を行う。 断熱近似 : 電子状態の計算と共に、ユニットセル内の原子の分子動力学計算(→原子を動かす)を行うので、この近似が成立しない系には適用できない。 ヘルマン-ファインマン力 : 原子(イオン芯)の分子動力学計算を行うためには、原子間に働く力を電子状態計算から求める必要がある。 圧力(ストレス) : 初期の頃は、ユニットセル内の原子(イオン芯)の構造の最適化のみが行われたが、後に圧力やストレスも計算してユニットセルの大きさや形そのものも最適化の対象となった。つまり電子状態の計算と同時に、ユニットセルの内部構造及びユニットセル自身の最適化(〔準〕安定構造の探索)も現在では行われるようになっている。 グラム・シュミットの正規直交化法 : 電子状態計算において、基底は直交していなければならない(←少なくともセルフコンシステントな計算が収束した段階では)。このため直交化(手法←グラムシュミットの方法以外の直交化手段もある)が必要。 高速フーリエ変換 : カー・パリネロ法に限らず、実空間法のような場合を除いて、電子状態計算(バンド計算)にとっては必須の手法と言っても過言ではない。 スーパーコンピュータ、超並列マシン : カー・パリネロ法の出現により、計算速度、効率は飛躍的に上がったが、電子状態部分の計算には依然として大量の計算資源が要求され、2003年においても原子数が100個を越えるような大きな系の計算の実現のためには、スーパーコンピュータや超並列マシンが必須である。 ワークステーション、パーソナルコンピュータ(PC) : カー・パリネロ法が登場した当初はPC上での第一原理分子動力学計算などは夢のような話であったが、同法が利用されるようになってから20年近くが経った2003年では、手法そのものの向上及び、ワークステーションやPC等の飛躍的な性能向上も相まって、スーパーコンピュータのような巨大な計算資源を使わなくとも中規模程度(〜数十原子からなる系)の第一原理分子動力学計算なら(←計算条件、目的にもよる)、ワークステーションや数台のPCクラスターあるいは単独で計算遂行が可能になっている。
※この「カー・パリネロ法で必要な近似、手法、道具」の解説は、「カー・パリネロ法」の解説の一部です。
「カー・パリネロ法で必要な近似、手法、道具」を含む「カー・パリネロ法」の記事については、「カー・パリネロ法」の概要を参照ください。
- カー・パリネロ法で必要な近似、手法、道具のページへのリンク