生化学 他の「分子スケール」生物科学との関係

Weblio 辞書 > 同じ種類の言葉 > 学問 > 専攻 > 化学 > 生化学の解説 > 他の「分子スケール」生物科学との関係 

生化学

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2024/04/07 08:07 UTC 版)

他の「分子スケール」生物科学との関係

生化学遺伝学分子生物学との関係図。

生化学の研究者は、生化学に特有の技術を使用するが、これらを遺伝学分子生物学生物物理学の分野で開発された技術や考え方と組み合わせることも多くなっている。これらの分野の間に明確な境界線はない。生化学は分子の生物学的活性に必要な化学を研究し、分子生物学は分子の生物学的活性を研究し、遺伝学ゲノムが担う分子の遺伝現象を研究する学問である。このことは、右上の図に示すように、各分野の関係を表す一つの可能性である。

  • 生化学: biochemistry)は、生体内で起こる化学物質と生命現象を研究する学問である。生化学者は、生体分子の役割、機能、および構造に重点を置いている。生物学的過程の背後にある化学の研究や、生物学的に活性な分子の合成は、生化学の応用である。生化学は、原子および分子のレベルでの生命の研究である。
  • 遺伝学: genetics)とは、生物における遺伝的な差異がもたらす影響を研究する学問である。多くの場合は、正常な構成要素(例: 1つの遺伝子)の欠如から推測することができる。変異体、いわゆる野生型あるいは正常な表現型と比較して1つか複数の機能的構成要素を欠く生物の研究である。遺伝的相互作用(エピスタシス)は、このような「ノックアウト」研究の単純な解釈をしばしば混乱させる。
  • 分子生物学: molecular biology)は、分子の合成、修飾、機構、および相互作用に焦点を当てた、生命現象の分子基盤を研究する学問である。遺伝物質がRNAに転写され、さらにタンパク質に翻訳されるという分子生物学のセントラルドグマは、単純化されすぎてはいるものの、この分野を理解するための良い出発点となる。この概念は、RNAの新たな役割の出現によって見直されている。
  • 化学生物学: chemical biology)は、小分子に基づく新しいツールを開発し、生体系への影響を最小限に抑えながら、その機能に関する詳細な情報を提供することを目指している。さらに、化学生物学では、生体分子と合成装置との非天然ハイブリッドを作り出すために生体システムを利用している(たとえば、遺伝子治療薬剤分子を送達できる空のウイルスキャプシド)。

注釈

  1. ^ 果物に含まれる糖分はフルクトース(果糖)だけではない。グルコース(ブドウ糖)とスクロース(ショ糖)もさまざまな果物に含まれており、時にはフルクトースを上回ることもある。たとえば、デーツ(ナツメヤシの果実)の可食部の32%はグルコースで、フルクトースは24%、スクロースは8%である。しかし、モモにはフルクトース(0.93%)やグルコース(1.47%)よりも多くのスクロース(6.66%)が含まれている。[43]

出典

  1. ^ Biological/Biochemistry”. acs.org. 2014年2月6日閲覧。
  2. ^ a b Voet (2005), p. 3.
  3. ^ Karp (2009), p. 2.
  4. ^ Miller (2012). p. 62.
  5. ^ Astbury (1961), p. 1124.
  6. ^ Srinivasan, Bharath (March 2022). “A guide to enzyme kinetics in early drug discovery”. The FEBS Journal. doi:10.1111/febs.16404. ISSN 1742-464X. PMID 35175693. https://doi.org/10.1111/febs.16404. 
  7. ^ Eldra (2007), p. 45.
  8. ^ Marks (2012), Chapter 14.
  9. ^ Finkel (2009), pp. 1–4.
  10. ^ UNICEF (2010), pp. 61, 75.
  11. ^ Cobb, N. J.; Surewicz, W. K. (2009). “Prion Diseases and Their Biochemical Mechanisms - Nathan J. Cobb and Witold K. Surewicz”. Biochemistry 48 (12): 2574–2585. doi:10.1021/bi900108v. PMC 2805067. PMID 19239250. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2805067/. 
  12. ^ a b Helvoort (2000), p. 81.
  13. ^ Scheele, Carl Wilhelm (1780). “Om Mjölk och dess syra [About milk and its acid]” (Swedish). Kongliga Vetenskaps Academiens Nya Handlingar (New Proceedings of the Royal Academy of Science) 1: 116–124. https://books.google.com/books?id=9N84AAAAMAAJ&pg=PA116. 
  14. ^ Scheele, Carl Wilhelm (1784). “Anmärkning om Citron-Saft, samt sätt att crystallisera den samma [Note on lemon juice, as well as ways to crystallize the same]” (Swedish). Kongliga Vetenskaps Academiens Nya Handlingar (New Proceedings of the Royal Academy of Science) 5: 105–109. 
  15. ^ 生化学辞典第2版、p.713 【生化学】
  16. ^ Hunter (2000), p. 75.
  17. ^ a b c d Srinivasan, Bharath (2020-09-27). “Words of advice: teaching enzyme kinetics”. The FEBS Journal 288 (7): 2068–2083. doi:10.1111/febs.15537. ISSN 1742-464X. PMID 32981225. 
  18. ^ Hamblin (2005), p. 26.
  19. ^ Hunter (2000), pp. 96–98.
  20. ^ Berg (1980), pp. 1–2.
  21. ^ Holmes (1987), p. xv.
  22. ^ Feldman (2001), p. 206.
  23. ^ Rayner-Canham (2005), p. 136.
  24. ^ Ziesak (1999), p. 169.
  25. ^ Kleinkauf (1988), p. 116.
  26. ^ Ben-Menahem (2009), p. 2982.
  27. ^ Amsler (1986), p. 55.
  28. ^ Horton (2013), p. 36.
  29. ^ Kleinkauf (1988), p. 43.
  30. ^ Edwards (1992), pp. 1161–1173.
  31. ^ Fiske (1890), pp. 419–20.
  32. ^ Wöhler, F. (1828). “Ueber künstliche Bildung des Harnstoffs”. Annalen der Physik und Chemie 88 (2): 253–256. Bibcode1828AnP....88..253W. doi:10.1002/andp.18280880206. ISSN 0003-3804. https://doi.org/10.1002/andp.18280880206. 
  33. ^ Kauffman (2001), pp. 121–133.
  34. ^ Lipman, Timothy O. (August 1964). “Wohler's preparation of urea and the fate of vitalism”. Journal of Chemical Education 41 (8): 452. Bibcode1964JChEd..41..452L. doi:10.1021/ed041p452. ISSN 0021-9584. https://doi.org/10.1021/ed041p452. 
  35. ^ Tropp (2012), pp. 19–20.
  36. ^ Krebs (2012), p. 32.
  37. ^ Butler (2009), p. 5.
  38. ^ Chandan (2007), pp. 193–194.
  39. ^ Cox, Nelson, Lehninger (2008). Lehninger Principles of Biochemistry. Macmillan 
  40. ^ Nielsen (1999), pp. 283–303.
  41. ^ Slabaugh (2007), pp. 3–6.
  42. ^ Whiting (1970), pp. 1–31.
  43. ^ Whiting, G.C. (1970), p. 5.
  44. ^ Voet (2005), pp. 358–359.
  45. ^ Varki (1999), p. 17.
  46. ^ Stryer (2007), p. 328.
  47. ^ Voet (2005), Ch. 12 Lipids and Membranes.
  48. ^ Metzler (2001), p. 58.
  49. ^ Feige, Matthias J.; Hendershot, Linda M.; Buchner, Johannes (2010). “How antibodies fold”. Trends in Biochemical Sciences 35 (4): 189–198. doi:10.1016/j.tibs.2009.11.005. PMC 4716677. PMID 20022755. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4716677/. 
  50. ^ Srinivasan, Bharath (2021-07-16). “A Guide to the Michaelis‐Menten equation: Steady state and beyond” (英語). The FEBS Journal 289 (20): 6086–6098. doi:10.1111/febs.16124. ISSN 1742-464X. PMID 34270860. 
  51. ^ Fromm and Hargrove (2012), pp. 35–51.
  52. ^ Saenger (1984), p. 84.
  53. ^ Fromm and Hargrove (2012), pp. 163–180.
  54. ^ Voet (2005), Ch. 17 Glycolysis.
  55. ^ A Dictionary of Biology. Oxford University Press. (17 September 2015). ISBN 9780198714378. https://www.oxfordreference.com/view/10.1093/acref/9780198714378.001.0001/acref-9780198714378 
  56. ^ Fromm and Hargrove (2012), pp. 183–194.
  57. ^ Meir Wilchek, Talia Miron (1999). “Thirty years of affinity chromatography”. Reactive, Functional Polymers 41 (1): 263-268. doi:10.1016/S1381-5148(99)00042-5. ISSN 1381-5148. https://doi.org/10.1016/S1381-5148(99)00042-5. 
  58. ^ André M. Striegel, Wallace W. Yau, Joseph J. Kirkland, Donald D. Bly (2009). Modern Size-Exclusion Liquid Chromatography: Practice of Gel Permeation and Gel Filtration Chromatography, Second Edition. doi:10.1002/9780470442876. ISBN 9780471201724. https://onlinelibrary.wiley.com/doi/book/10.1002/9780470442876. 
  59. ^ Voller, A., Bidwell, D. E., & Bartlett, A. (1979). The enzyme linked immunosorbent assay (ELISA). A guide with abstracts of microplate applications. Dynatech Europe, Borough House, Rue du Pre..
  60. ^ Hillenkamp, Franz; Jaskolla, Thorsten W; Karas, Michael (2014). “The MALDI process and method”. MALDI MS. A Practical Guide to Instrumentation, Methods, and Applications, 2nd Ed.(Ed.: F. Hillenkamp, J. Peter-Katalinic), Wiley Blackwell, Weinheim, Germany (Wiley Online Library). doi:10.1002/9783527335961. https://onlinelibrary.wiley.com/doi/book/10.1002/9783527335961#page=16. 






生化学と同じ種類の言葉


英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「生化学」の関連用語

生化学のお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



生化学のページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアの生化学 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。

©2024 GRAS Group, Inc.RSS