天体物理学 観測天体物理学

天体物理学

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2024/04/23 15:58 UTC 版)

観測天体物理学

多くの場合、天体物理学的な物理過程は地球上の研究室では再現できない。しかし、電磁波のスペクトル全体を見渡せば、膨大な種類の天体を見ることができる。これらの天体からデータを受動的に集めることによって研究を行うのが観測天体物理学の目的である。

天体物理現象を研究するのに必要な装置や手法には様々なものがある。現在関心を持たれている天体物理現象の多くは、非常に先進的な技術がなければ研究できなかったり、ごく最近まで現象自体が知られていなかったものである。

天体物理学の観測の大半は電磁波スペクトルを用いて行われている。

電磁波の放射以外では、宇宙の遠方からやってくるもので地球から観測できる対象は限られている。重力波天文台がいくつか作られているが、重力波で観測するというよりは、検出が極端に困難な重力波を検出するのが当面の目標である。ニュートリノ天文台も主に太陽を研究する目的で建設されている。非常に高エネルギーの粒子からなる宇宙線が地球の大気と衝突する現象も観測可能である。

天文観測では、その時間スケールにおいても様々な違いがある。ほとんどの光学観測には数分から数時間単位の時間がかかるため、これよりも短い時間で変化する現象は容易には観測できない。しかしいくつかの天体については数百年、あるいは千年以上にわたって歴史上の記録に残されているデータを見ることができる。一方で、電波観測では数ミリ秒の時間スケールのイベント(ミリ秒パルサーなど)を見たり、数年にわたるデータを重ね合わせて調べたりする(パルサーの減速の研究など)ことができる。こういった異なる時間スケールの観測から得られる情報は非常に異なった様相を見せる。

太陽の研究は観測天体物理学の中で特別な位置にある。太陽以外の恒星は全て非常に遠距離にあるので、太陽は他の星とは比べ物にならないほど詳細に観測できる唯一の恒星である。太陽の性質を理解することは、他の恒星を理解する助けとなる。

恒星がどのように進化するかという恒星進化論の話題は、恒星のタイプの違いをヘルツシュプルング・ラッセル図の上の個々の位置の違いで表すことが多い。この図は恒星の誕生から崩壊までの星の状態を表現していると見ることができる。




「天体物理学」の続きの解説一覧




天体物理学と同じ種類の言葉


固有名詞の分類


英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「天体物理学」の関連用語

天体物理学のお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



天体物理学のページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアの天体物理学 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。

©2024 GRAS Group, Inc.RSS