線型写像 線型写像の演算

線型写像

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2023/10/14 20:53 UTC 版)

線型写像の演算

線型写像がいくつか与えられたとき、それらから新たな線型写像を作り出す操作がいくつか存在する。

線型演算
線型写像 f, f1, f2: VW および係数体の元 a に対して、スカラー倍 af および和 f1 + f2
で定めると、これらはまた V から W への線型写像を定める。
f: VW および g: WX が線型ならば、その合成 gfV から X への線型写像を定める。
反転
線型写像 f: VW が全単射(したがって同型)であるとき、逆写像 f−1: WV もまた線型同型になる。

双線型写像 f: V × WX が与えられたとき、テンソル積空間 VW から X への線型写像 φ

によって誘導される(テンソル積の普遍性)。


  1. ^ 一次の微分形式(一次微分形式もしくは微分一次形式; differential one-form)を単に「一次形式」または「1-形式」(one-form) と呼ぶこともある。これとの対照のため、本項に云う意味での一次形式を「代数一次形式」(albegraic one-form) と呼ぶ場合がある。
  2. ^ 加法性から斉一次性が従うベクトル空間もあるが、一般にはそのようなことは期待できない。例えば、実数の全体 は無限次元 -線型空間とも一次元 -線型空間とも見做すことができるが、 上の加法的函数は必ず -線型写像となり、しかし必ずしも -線型でない(この場合はさらに連続性を仮定すれば -線型になる)ことが示される(コーシーの函数方程式の項を参照)。つまり一般には「加法性」と「斉一次性」は独立した制約条件である。
  3. ^ 考えている係数体が何であるかは線型性にとって重要である。例えば、複素数全体の成す体 上一次元のベクトル空間であるとともに、 上二次元のベクトル空間でもある。各複素数に対し、その複素共軛をとる操作は 上の -線型変換であるが、しかし -線型ではない。






線型写像と同じ種類の言葉


英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「線型写像」の関連用語

線型写像のお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



線型写像のページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアの線型写像 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。

©2024 GRAS Group, Inc.RSS