シュワルツ超函数
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2024/09/27 16:54 UTC 版)
この記事には参考文献や外部リンクの一覧が含まれていますが、脚注によって参照されておらず、情報源が不明瞭です。
|
解析学におけるシュワルツ超函数(シュワルツちょうかんすう、英: distribution; 分布)あるいは超函数(英: generalized function; 広義の函数)は、函数の一般化となる数学的対象である。シュワルツ超函数の概念は、古典的な意味での導函数を持たない函数に対しても微分を可能とする。特に、任意の局所可積分函数は超函数の意味で微分可能である。シュワルツ超函数は偏微分方程式の弱解(広義の解)の定式化に広く用いられる。古典的な意味での解(真の解)が存在しないか構成が非常に困難であるような場合でも、その微分方程式の超函数解はしばしばより容易に求まる。シュワルツ超函数の概念は、多くの問題が自然に解や初期条件がディラック・デルタのような超函数となるような偏微分方程式として定式化される物理学や工学においても重要である。
広義の函数としての超函数 (generalized function) は1935年セルゲイ・ソボレフによって導入されたが、その後1940年代になって一貫した超函数論を展開するローラン・シュヴァルツによって再導入される。
超函数(distribution)の拡張の一つとして、佐藤超函数があるとみなすことができる。
基本的な考え方
基本的な考え方は、函数を適当な「テスト函数」(扱いやすくよい振舞いをする函数)の空間上の抽象線型汎函数と同一視することである。超函数に対する作用・演算は、それをテスト函数へ移行することによって理解することができる。
例えば、f: R → R を局所可積分函数、φ: R → R をコンパクトな台を持つ(すなわちある有界集合の外側で恒等的に 0 となる)滑らかな函数(つまり無限回微分可能な函数)とする。函数 φ が「テスト函数」である。このとき、
- シュワルツ超函数のページへのリンク