Math.Cos メソッド
アセンブリ: mscorlib (mscorlib.dll 内)



次に示すのは、Cos を使用して、選択した角度から三角恒等式を求める例です。
' Example for the trigonometric Math.Sin( Double ) and Math.Cos( Double ) methods. Imports System Imports Microsoft.VisualBasic Module SinCos Sub Main() Console.WriteLine( _ "This example of trigonometric " & _ "Math.Sin( double ) and Math.Cos( double )" & vbCrLf & _ "generates the following output." & vbCrLf) Console.WriteLine( _ "Convert selected values for X to radians " & vbCrLf & _ "and evaluate these trigonometric identities:") Console.WriteLine( _ " sin^2(X) + cos^2(X) = 1" & vbCrLf & _ " sin(2 * X) = 2 * sin(X) * cos(X)") Console.WriteLine(" cos(2 * X) = cos^2(X) - sin^2(X)") UseSineCosine(15.0) UseSineCosine(30.0) UseSineCosine(45.0) Console.WriteLine( _ vbCrLf & "Convert selected values for X and Y to radians" & _ vbCrLf & "and evaluate these trigonometric identities:") Console.WriteLine(" sin(X + Y) = sin(X) * cos(Y) + cos(X) * sin(Y)") Console.WriteLine(" cos(X + Y) = cos(X) * cos(Y) - sin(X) * sin(Y)") UseTwoAngles(15.0, 30.0) UseTwoAngles(30.0, 45.0) End Sub 'Main ' Evaluate trigonometric identities with a given angle. Sub UseSineCosine(degrees As Double) Dim angle As Double = Math.PI * degrees / 180.0 Dim sinAngle As Double = Math.Sin(angle) Dim cosAngle As Double = Math.Cos(angle) ' Evaluate sin^2(X) + cos^2(X) = 1. Console.WriteLine( _ vbCrLf & " Math.Sin({0} deg) = {1:E16}" & _ vbCrLf & " Math.Cos({0} deg) = {2:E16}", _ degrees, Math.Sin(angle), Math.Cos(angle)) Console.WriteLine( _ "(Math.Sin({0} deg))^2 + (Math.Cos({0} deg))^2 = {1:E16}", _ degrees, sinAngle * sinAngle + cosAngle * cosAngle) ' Evaluate sin(2 * X) = 2 * sin(X) * cos(X). Console.WriteLine( _ " Math.Sin({0} deg) = {1:E16}", _ 2.0 * degrees, Math.Sin(2.0 * angle)) Console.WriteLine( _ " 2 * Math.Sin({0} deg) * Math.Cos({0} deg) = {1:E16}", _ degrees, 2.0 * sinAngle * cosAngle) ' Evaluate cos(2 * X) = cos^2(X) - sin^2(X). Console.WriteLine( _ " Math.Cos({0} deg) = {1:E16}", _ 2.0 * degrees, Math.Cos(2.0 * angle)) Console.WriteLine( _ "(Math.Cos({0} deg))^2 - (Math.Sin({0} deg))^2 = {1:E16}", _ degrees, cosAngle * cosAngle - sinAngle * sinAngle) End Sub 'UseSineCosine ' Evaluate trigonometric identities that are functions of two angles. Sub UseTwoAngles(degreesX As Double, degreesY As Double) Dim angleX As Double = Math.PI * degreesX / 180.0 Dim angleY As Double = Math.PI * degreesY / 180.0 ' Evaluate sin(X + Y) = sin(X) * cos(Y) + cos(X) * sin(Y). Console.WriteLine( _ vbCrLf & " Math.Sin({0} deg) * Math.Cos({1} deg) +" & _ vbCrLf & " Math.Cos({0} deg) * Math.Sin({1} deg) = {2:E16}", _ degreesX, degreesY, Math.Sin(angleX) * Math.Cos(angleY) + _ Math.Cos(angleX) * Math.Sin(angleY)) Console.WriteLine( _ " Math.Sin({0} deg) = {1:E16}", _ degreesX + degreesY, Math.Sin(angleX + angleY)) ' Evaluate cos(X + Y) = cos(X) * cos(Y) - sin(X) * sin(Y). Console.WriteLine( _ " Math.Cos({0} deg) * Math.Cos({1} deg) -" & vbCrLf & _ " Math.Sin({0} deg) * Math.Sin({1} deg) = {2:E16}", _ degreesX, degreesY, Math.Cos(angleX) * Math.Cos(angleY) - _ Math.Sin(angleX) * Math.Sin(angleY)) Console.WriteLine( _ " Math.Cos({0} deg) = {1:E16}", _ degreesX + degreesY, Math.Cos(angleX + angleY)) End Sub 'UseTwoAngles End Module 'SinCos ' This example of trigonometric Math.Sin( double ) and Math.Cos( double ) ' generates the following output. ' ' Convert selected values for X to radians ' and evaluate these trigonometric identities: ' sin^2(X) + cos^2(X) = 1 ' sin(2 * X) = 2 * sin(X) * cos(X) ' cos(2 * X) = cos^2(X) - sin^2(X) ' ' Math.Sin(15 deg) = 2.5881904510252074E-001 ' Math.Cos(15 deg) = 9.6592582628906831E-001 ' (Math.Sin(15 deg))^2 + (Math.Cos(15 deg))^2 = 1.0000000000000000E+000 ' Math.Sin(30 deg) = 4.9999999999999994E-001 ' 2 * Math.Sin(15 deg) * Math.Cos(15 deg) = 4.9999999999999994E-001 ' Math.Cos(30 deg) = 8.6602540378443871E-001 ' (Math.Cos(15 deg))^2 - (Math.Sin(15 deg))^2 = 8.6602540378443871E-001 ' ' Math.Sin(30 deg) = 4.9999999999999994E-001 ' Math.Cos(30 deg) = 8.6602540378443871E-001 ' (Math.Sin(30 deg))^2 + (Math.Cos(30 deg))^2 = 1.0000000000000000E+000 ' Math.Sin(60 deg) = 8.6602540378443860E-001 ' 2 * Math.Sin(30 deg) * Math.Cos(30 deg) = 8.6602540378443860E-001 ' Math.Cos(60 deg) = 5.0000000000000011E-001 ' (Math.Cos(30 deg))^2 - (Math.Sin(30 deg))^2 = 5.0000000000000022E-001 ' ' Math.Sin(45 deg) = 7.0710678118654746E-001 ' Math.Cos(45 deg) = 7.0710678118654757E-001 ' (Math.Sin(45 deg))^2 + (Math.Cos(45 deg))^2 = 1.0000000000000000E+000 ' Math.Sin(90 deg) = 1.0000000000000000E+000 ' 2 * Math.Sin(45 deg) * Math.Cos(45 deg) = 1.0000000000000000E+000 ' Math.Cos(90 deg) = 6.1230317691118863E-017 ' (Math.Cos(45 deg))^2 - (Math.Sin(45 deg))^2 = 2.2204460492503131E-016 ' ' Convert selected values for X and Y to radians ' and evaluate these trigonometric identities: ' sin(X + Y) = sin(X) * cos(Y) + cos(X) * sin(Y) ' cos(X + Y) = cos(X) * cos(Y) - sin(X) * sin(Y) ' ' Math.Sin(15 deg) * Math.Cos(30 deg) + ' Math.Cos(15 deg) * Math.Sin(30 deg) = 7.0710678118654746E-001 ' Math.Sin(45 deg) = 7.0710678118654746E-001 ' Math.Cos(15 deg) * Math.Cos(30 deg) - ' Math.Sin(15 deg) * Math.Sin(30 deg) = 7.0710678118654757E-001 ' Math.Cos(45 deg) = 7.0710678118654757E-001 ' ' Math.Sin(30 deg) * Math.Cos(45 deg) + ' Math.Cos(30 deg) * Math.Sin(45 deg) = 9.6592582628906831E-001 ' Math.Sin(75 deg) = 9.6592582628906820E-001 ' Math.Cos(30 deg) * Math.Cos(45 deg) - ' Math.Sin(30 deg) * Math.Sin(45 deg) = 2.5881904510252085E-001 ' Math.Cos(75 deg) = 2.5881904510252096E-001
// Example for the trigonometric Math.Sin( double ) // and Math.Cos( double ) methods. using System; class SinCos { public static void Main() { Console.WriteLine( "This example of trigonometric " + "Math.Sin( double ) and Math.Cos( double )\n" + "generates the following output.\n" ); Console.WriteLine( "Convert selected values for X to radians \n" + "and evaluate these trigonometric identities:" ); Console.WriteLine( " sin^2(X) + cos^2(X) == 1\n" + " sin(2 * X) == 2 * sin(X) * cos(X)" ); Console.WriteLine( " cos(2 * X) == cos^2(X) - sin^2(X)" ); UseSineCosine(15.0); UseSineCosine(30.0); UseSineCosine(45.0); Console.WriteLine( "\nConvert selected values for X and Y to radians \n" + "and evaluate these trigonometric identities:" ); Console.WriteLine( " sin(X + Y) == sin(X) * cos(Y) + cos(X) * sin(Y)" ); Console.WriteLine( " cos(X + Y) == cos(X) * cos(Y) - sin(X) * sin(Y)" ); UseTwoAngles(15.0, 30.0); UseTwoAngles(30.0, 45.0); } // Evaluate trigonometric identities with a given angle. static void UseSineCosine(double degrees) { double angle = Math.PI * degrees / 180.0; double sinAngle = Math.Sin(angle); double cosAngle = Math.Cos(angle); // Evaluate sin^2(X) + cos^2(X) == 1. Console.WriteLine( "\n Math.Sin({0} deg) == {1:E16}\n" + " Math.Cos({0} deg) == {2:E16}", degrees, Math.Sin(angle), Math.Cos(angle) ); Console.WriteLine( "(Math.Sin({0} deg))^2 + (Math.Cos({0} deg))^2 == {1:E16}", degrees, sinAngle * sinAngle + cosAngle * cosAngle ); // Evaluate sin(2 * X) == 2 * sin(X) * cos(X). Console.WriteLine( " Math.Sin({0} deg) == {1:E16}", 2.0 * degrees, Math.Sin(2.0 * angle) ); Console.WriteLine( " 2 * Math.Sin({0} deg) * Math.Cos({0} deg) == {1:E16}", degrees, 2.0 * sinAngle * cosAngle ); // Evaluate cos(2 * X) == cos^2(X) - sin^2(X). Console.WriteLine( " Math.Cos({0} deg) == {1:E16}", 2.0 * degrees, Math.Cos(2.0 * angle) ); Console.WriteLine( "(Math.Cos({0} deg))^2 - (Math.Sin({0} deg))^2 == {1:E16}", degrees, cosAngle * cosAngle - sinAngle * sinAngle ); } // Evaluate trigonometric identities that are functions of two angles. static void UseTwoAngles(double degreesX, double degreesY) { double angleX = Math.PI * degreesX / 180.0; double angleY = Math.PI * degreesY / 180.0; // Evaluate sin(X + Y) == sin(X) * cos(Y) + cos(X) * sin(Y). Console.WriteLine( "\n Math.Sin({0} deg) * Math.Cos({1} deg) +\n" + " Math.Cos({0} deg) * Math.Sin({1} deg) == {2:E16}", degreesX, degreesY, Math.Sin(angleX) * Math.Cos(angleY) + Math.Cos(angleX) * Math.Sin(angleY)); Console.WriteLine( " Math.Sin({0} deg) == {1:E16}", degreesX + degreesY, Math.Sin(angleX + angleY)); // Evaluate cos(X + Y) == cos(X) * cos(Y) - sin(X) * sin(Y). Console.WriteLine( " Math.Cos({0} deg) * Math.Cos({1} deg) -\n" + " Math.Sin({0} deg) * Math.Sin({1} deg) == {2:E16}", degreesX, degreesY, Math.Cos(angleX) * Math.Cos(angleY) - Math.Sin(angleX) * Math.Sin(angleY)); Console.WriteLine( " Math.Cos({0} deg) == {1:E16}", degreesX + degreesY, Math.Cos(angleX + angleY)); } } /* This example of trigonometric Math.Sin( double ) and Math.Cos( double ) generates the following output. Convert selected values for X to radians and evaluate these trigonometric identities: sin^2(X) + cos^2(X) == 1 sin(2 * X) == 2 * sin(X) * cos(X) cos(2 * X) == cos^2(X) - sin^2(X) Math.Sin(15 deg) == 2.5881904510252074E-001 Math.Cos(15 deg) == 9.6592582628906831E-001 (Math.Sin(15 deg))^2 + (Math.Cos(15 deg))^2 == 1.0000000000000000E+000 Math.Sin(30 deg) == 4.9999999999999994E-001 2 * Math.Sin(15 deg) * Math.Cos(15 deg) == 4.9999999999999994E-001 Math.Cos(30 deg) == 8.6602540378443871E-001 (Math.Cos(15 deg))^2 - (Math.Sin(15 deg))^2 == 8.6602540378443871E-001 Math.Sin(30 deg) == 4.9999999999999994E-001 Math.Cos(30 deg) == 8.6602540378443871E-001 (Math.Sin(30 deg))^2 + (Math.Cos(30 deg))^2 == 1.0000000000000000E+000 Math.Sin(60 deg) == 8.6602540378443860E-001 2 * Math.Sin(30 deg) * Math.Cos(30 deg) == 8.6602540378443860E-001 Math.Cos(60 deg) == 5.0000000000000011E-001 (Math.Cos(30 deg))^2 - (Math.Sin(30 deg))^2 == 5.0000000000000022E-001 Math.Sin(45 deg) == 7.0710678118654746E-001 Math.Cos(45 deg) == 7.0710678118654757E-001 (Math.Sin(45 deg))^2 + (Math.Cos(45 deg))^2 == 1.0000000000000000E+000 Math.Sin(90 deg) == 1.0000000000000000E+000 2 * Math.Sin(45 deg) * Math.Cos(45 deg) == 1.0000000000000000E+000 Math.Cos(90 deg) == 6.1230317691118863E-017 (Math.Cos(45 deg))^2 - (Math.Sin(45 deg))^2 == 2.2204460492503131E-016 Convert selected values for X and Y to radians and evaluate these trigonometric identities: sin(X + Y) == sin(X) * cos(Y) + cos(X) * sin(Y) cos(X + Y) == cos(X) * cos(Y) - sin(X) * sin(Y) Math.Sin(15 deg) * Math.Cos(30 deg) + Math.Cos(15 deg) * Math.Sin(30 deg) == 7.0710678118654746E-001 Math.Sin(45 deg) == 7.0710678118654746E-001 Math.Cos(15 deg) * Math.Cos(30 deg) - Math.Sin(15 deg) * Math.Sin(30 deg) == 7.0710678118654757E-001 Math.Cos(45 deg) == 7.0710678118654757E-001 Math.Sin(30 deg) * Math.Cos(45 deg) + Math.Cos(30 deg) * Math.Sin(45 deg) == 9.6592582628906831E-001 Math.Sin(75 deg) == 9.6592582628906820E-001 Math.Cos(30 deg) * Math.Cos(45 deg) - Math.Sin(30 deg) * Math.Sin(45 deg) == 2.5881904510252085E-001 Math.Cos(75 deg) == 2.5881904510252096E-001 */
// Example for the trigonometric Math.Sin( double ) // and Math.Cos( double ) methods. using namespace System; // Evaluate trigonometric identities with a given angle. void UseSineCosine( double degrees ) { double angle = Math::PI * degrees / 180.0; double sinAngle = Math::Sin( angle ); double cosAngle = Math::Cos( angle ); // Evaluate sin^2(X) + cos^2(X) == 1. Console::WriteLine( "\n Math::Sin({0} deg) == {1:E16}\n" " Math::Cos({0} deg) == {2:E16}", degrees, Math::Sin( angle ), Math::Cos( angle ) ); Console::WriteLine( "(Math::Sin({0} deg))^2 + (Math::Cos({0} deg))^2 == {1:E16}", degrees, sinAngle * sinAngle + cosAngle * cosAngle ); // Evaluate sin(2 * X) == 2 * sin(X) * cos(X). Console::WriteLine( " Math::Sin({0} deg) == {1:E16}", 2.0 * degrees, Math::Sin( 2.0 * angle ) ); Console::WriteLine( " 2 * Math::Sin({0} deg) * Math::Cos({0} deg) == {1:E16}", degrees, 2.0 * sinAngle * cosAngle ); // Evaluate cos(2 * X) == cos^2(X) - sin^2(X). Console::WriteLine( " Math::Cos({0} deg) == {1:E16}", 2.0 * degrees, Math::Cos( 2.0 * angle ) ); Console::WriteLine( "(Math::Cos({0} deg))^2 - (Math::Sin({0} deg))^2 == {1:E16}", degrees, cosAngle * cosAngle - sinAngle * sinAngle ); } // Evaluate trigonometric identities that are functions of two angles. void UseTwoAngles( double degreesX, double degreesY ) { double angleX = Math::PI * degreesX / 180.0; double angleY = Math::PI * degreesY / 180.0; // Evaluate sin(X + Y) == sin(X) * cos(Y) + cos(X) * sin(Y). Console::WriteLine( "\n Math::Sin({0} deg) * Math::Cos({1} deg) +\n" " Math::Cos({0} deg) * Math::Sin({1} deg) == {2:E16}", degreesX, degreesY, Math::Sin( angleX ) * Math::Cos( angleY ) + Math::Cos( angleX ) * Math::Sin( angleY ) ); Console::WriteLine( " Math::Sin({0} deg) == {1:E16}", degreesX + degreesY, Math::Sin( angleX + angleY ) ); // Evaluate cos(X + Y) == cos(X) * cos(Y) - sin(X) * sin(Y). Console::WriteLine( " Math::Cos({0} deg) * Math::Cos({1} deg) -\n" " Math::Sin({0} deg) * Math::Sin({1} deg) == {2:E16}", degreesX, degreesY, Math::Cos( angleX ) * Math::Cos( angleY ) - Math::Sin( angleX ) * Math::Sin( angleY ) ); Console::WriteLine( " Math::Cos({0} deg) == {1:E16}", degreesX + degreesY, Math::Cos( angleX + angleY ) ); } int main() { Console::WriteLine( "This example of trigonometric " "Math::Sin( double ) and Math::Cos( double )\n" "generates the following output.\n" ); Console::WriteLine( "Convert selected values for X to radians \n" "and evaluate these trigonometric identities:" ); Console::WriteLine( " sin^2(X) + cos^2(X) == 1\n" " sin(2 * X) == 2 * sin(X) * cos(X)" ); Console::WriteLine( " cos(2 * X) == cos^2(X) - sin^2(X)" ); UseSineCosine( 15.0 ); UseSineCosine( 30.0 ); UseSineCosine( 45.0 ); Console::WriteLine( "\nConvert selected values for X and Y to radians \n" "and evaluate these trigonometric identities:" ); Console::WriteLine( " sin(X + Y) == sin(X) * cos(Y) + cos(X) * sin(Y)" ); Console::WriteLine( " cos(X + Y) == cos(X) * cos(Y) - sin(X) * sin(Y)" ); UseTwoAngles( 15.0, 30.0 ); UseTwoAngles( 30.0, 45.0 ); } /* This example of trigonometric Math::Sin( double ) and Math::Cos( double ) generates the following output. Convert selected values for X to radians and evaluate these trigonometric identities: sin^2(X) + cos^2(X) == 1 sin(2 * X) == 2 * sin(X) * cos(X) cos(2 * X) == cos^2(X) - sin^2(X) Math::Sin(15 deg) == 2.5881904510252074E-001 Math::Cos(15 deg) == 9.6592582628906831E-001 (Math::Sin(15 deg))^2 + (Math::Cos(15 deg))^2 == 1.0000000000000000E+000 Math::Sin(30 deg) == 4.9999999999999994E-001 2 * Math::Sin(15 deg) * Math::Cos(15 deg) == 4.9999999999999994E-001 Math::Cos(30 deg) == 8.6602540378443871E-001 (Math::Cos(15 deg))^2 - (Math::Sin(15 deg))^2 == 8.6602540378443871E-001 Math::Sin(30 deg) == 4.9999999999999994E-001 Math::Cos(30 deg) == 8.6602540378443871E-001 (Math::Sin(30 deg))^2 + (Math::Cos(30 deg))^2 == 1.0000000000000000E+000 Math::Sin(60 deg) == 8.6602540378443860E-001 2 * Math::Sin(30 deg) * Math::Cos(30 deg) == 8.6602540378443860E-001 Math::Cos(60 deg) == 5.0000000000000011E-001 (Math::Cos(30 deg))^2 - (Math::Sin(30 deg))^2 == 5.0000000000000022E-001 Math::Sin(45 deg) == 7.0710678118654746E-001 Math::Cos(45 deg) == 7.0710678118654757E-001 (Math::Sin(45 deg))^2 + (Math::Cos(45 deg))^2 == 1.0000000000000000E+000 Math::Sin(90 deg) == 1.0000000000000000E+000 2 * Math::Sin(45 deg) * Math::Cos(45 deg) == 1.0000000000000000E+000 Math::Cos(90 deg) == 6.1230317691118863E-017 (Math::Cos(45 deg))^2 - (Math::Sin(45 deg))^2 == 2.2204460492503131E-016 Convert selected values for X and Y to radians and evaluate these trigonometric identities: sin(X + Y) == sin(X) * cos(Y) + cos(X) * sin(Y) cos(X + Y) == cos(X) * cos(Y) - sin(X) * sin(Y) Math::Sin(15 deg) * Math::Cos(30 deg) + Math::Cos(15 deg) * Math::Sin(30 deg) == 7.0710678118654746E-001 Math::Sin(45 deg) == 7.0710678118654746E-001 Math::Cos(15 deg) * Math::Cos(30 deg) - Math::Sin(15 deg) * Math::Sin(30 deg) == 7.0710678118654757E-001 Math::Cos(45 deg) == 7.0710678118654757E-001 Math::Sin(30 deg) * Math::Cos(45 deg) + Math::Cos(30 deg) * Math::Sin(45 deg) == 9.6592582628906831E-001 Math::Sin(75 deg) == 9.6592582628906820E-001 Math::Cos(30 deg) * Math::Cos(45 deg) - Math::Sin(30 deg) * Math::Sin(45 deg) == 2.5881904510252085E-001 Math::Cos(75 deg) == 2.5881904510252096E-001 */
// Example for the trigonometric Math.Sin( double ) // and Math.Cos( double ) methods. import System.*; class SinCos { public static void main(String[] args) { Console.WriteLine( ("This example of trigonometric " + "Math.Sin( double ) and Math.Cos( double )\n" + "generates the following output.\n")); Console.WriteLine( ("Convert selected values for X to radians \n" + "and evaluate these trigonometric identities:")); Console.WriteLine((" sin^2(X) + cos^2(X) == 1\n" + " sin(2 * X) == 2 * sin(X) * cos(X)")); Console.WriteLine(" cos(2 * X) == cos^2(X) - sin^2(X)"); UseSineCosine(15.0); UseSineCosine(30.0); UseSineCosine(45.0); Console.WriteLine( ("\nConvert selected values for X and Y to radians \n" + "and evaluate these trigonometric identities:")); Console.WriteLine(" sin(X + Y) == sin(X) * cos(Y) + cos(X) * sin(Y)"); Console.WriteLine(" cos(X + Y) == cos(X) * cos(Y) - sin(X) * sin(Y)"); UseTwoAngles(15.0, 30.0); UseTwoAngles(30.0, 45.0); } //main // Evaluate trigonometric identities with a given angle. static void UseSineCosine(double degrees) { double angle = System.Math.PI * degrees / 180.0; double sinAngle = System.Math.Sin(angle); double cosAngle = System.Math.Cos(angle); // Evaluate sin^2(X) + cos^2(X) == 1. Console.WriteLine( "\n Math.Sin({0} deg) == {1}\n" + " Math.Cos({0} deg) == {2}", System.Convert.ToString(degrees), ((System.Double)(System.Math.Sin(angle))).ToString("E16"), ((System.Double)(System.Math.Cos(angle))).ToString("E16")); Console.WriteLine( "(Math.Sin({0} deg))^2 + (Math.Cos({0} deg))^2 == {1}", System.Convert.ToString(degrees), ((System.Double)( sinAngle * sinAngle + cosAngle * cosAngle)).ToString("E16")); // Evaluate sin(2 * X) == 2 * sin(X) * cos(X). Console.WriteLine( " Math.Sin({0} deg) == {1}", System.Convert.ToString(2.0 * degrees), ((System.Double)( System.Math.Sin((2.0 * angle)))).ToString("E16")); Console.WriteLine( " 2 * Math.Sin({0} deg) * Math.Cos({0} deg) == {1}", System.Convert.ToString(degrees), ((System.Double)( 2.0 * sinAngle * cosAngle)).ToString ("E16")); // Evaluate cos(2 * X) == cos^2(X) - sin^2(X). Console.WriteLine( " Math.Cos({0} deg) == {1}", System.Convert.ToString( 2.0 * degrees), ((System.Double)( System.Math.Cos((2.0 * angle)))).ToString ("E16") ); Console.WriteLine( "(Math.Cos({0} deg))^2 - (Math.Sin({0} deg))^2 == {1}", System.Convert.ToString(degrees),( (System.Double)( cosAngle * cosAngle - sinAngle * sinAngle)).ToString ("E16")); } //UseSineCosine // Evaluate trigonometric identities that are functions of two angles. static void UseTwoAngles(double degreesX, double degreesY) { double angleX = System.Math.PI * degreesX / 180.0; double angleY = System.Math.PI * degreesY / 180.0; // Evaluate sin(X + Y) == sin(X) * cos(Y) + cos(X) * sin(Y). Console.WriteLine( "\n Math.Sin({0} deg) * Math.Cos({1} deg) +\n" + " Math.Cos({0} deg) * Math.Sin({1} deg) == {2}", System.Convert.ToString(degreesX), System.Convert.ToString(degreesY), ((System.Double)( System.Math.Sin(angleX) * System.Math.Cos(angleY) + System.Math.Cos(angleX) * System.Math.Sin(angleY))).ToString("E16")); Console.WriteLine( " Math.Sin({0} deg) == {1}", System.Convert.ToString(degreesX + degreesY), ((System.Double)(System.Math.Sin( (angleX + angleY)))).ToString("E16")); // Evaluate cos(X + Y) == cos(X) * cos(Y) - sin(X) * sin(Y). Console.WriteLine( " Math.Cos({0} deg) * Math.Cos({1} deg) -\n" + " Math.Sin({0} deg) * Math.Sin({1} deg) == {2}", System.Convert.ToString(degreesX), System.Convert.ToString(degreesY), ((System.Double)( System.Math.Cos(angleX) * System.Math.Cos(angleY) - System.Math.Sin(angleX) * System.Math.Sin(angleY))).ToString("E16")); Console.WriteLine( " Math.Cos({0} deg) == {1}", System.Convert.ToString(degreesX + degreesY), ((System.Double)(System.Math.Cos( (angleX + angleY)))).ToString("E16")); } //UseTwoAngles } //SinCos /* This example of trigonometric Math.Sin( double ) and Math.Cos( double ) generates the following output. Convert selected values for X to radians and evaluate these trigonometric identities: sin^2(X) + cos^2(X) == 1 sin(2 * X) == 2 * sin(X) * cos(X) cos(2 * X) == cos^2(X) - sin^2(X) Math.Sin(15 deg) == 2.5881904510252074E-001 Math.Cos(15 deg) == 9.6592582628906831E-001 (Math.Sin(15 deg))^2 + (Math.Cos(15 deg))^2 == 1.0000000000000000E+000 Math.Sin(30 deg) == 4.9999999999999994E-001 2 * Math.Sin(15 deg) * Math.Cos(15 deg) == 4.9999999999999994E-001 Math.Cos(30 deg) == 8.6602540378443871E-001 (Math.Cos(15 deg))^2 - (Math.Sin(15 deg))^2 == 8.6602540378443871E-001 Math.Sin(30 deg) == 4.9999999999999994E-001 Math.Cos(30 deg) == 8.6602540378443871E-001 (Math.Sin(30 deg))^2 + (Math.Cos(30 deg))^2 == 1.0000000000000000E+000 Math.Sin(60 deg) == 8.6602540378443860E-001 2 * Math.Sin(30 deg) * Math.Cos(30 deg) == 8.6602540378443860E-001 Math.Cos(60 deg) == 5.0000000000000011E-001 (Math.Cos(30 deg))^2 - (Math.Sin(30 deg))^2 == 5.0000000000000022E-001 Math.Sin(45 deg) == 7.0710678118654746E-001 Math.Cos(45 deg) == 7.0710678118654757E-001 (Math.Sin(45 deg))^2 + (Math.Cos(45 deg))^2 == 1.0000000000000000E+000 Math.Sin(90 deg) == 1.0000000000000000E+000 2 * Math.Sin(45 deg) * Math.Cos(45 deg) == 1.0000000000000000E+000 Math.Cos(90 deg) == 6.1230317691118863E-017 (Math.Cos(45 deg))^2 - (Math.Sin(45 deg))^2 == 2.2204460492503131E-016 Convert selected values for X and Y to radians and evaluate these trigonometric identities: sin(X + Y) == sin(X) * cos(Y) + cos(X) * sin(Y) cos(X + Y) == cos(X) * cos(Y) - sin(X) * sin(Y) Math.Sin(15 deg) * Math.Cos(30 deg) + Math.Cos(15 deg) * Math.Sin(30 deg) == 7.0710678118654746E-001 Math.Sin(45 deg) == 7.0710678118654746E-001 Math.Cos(15 deg) * Math.Cos(30 deg) - Math.Sin(15 deg) * Math.Sin(30 deg) == 7.0710678118654757E-001 Math.Cos(45 deg) == 7.0710678118654757E-001 Math.Sin(30 deg) * Math.Cos(45 deg) + Math.Cos(30 deg) * Math.Sin(45 deg) == 9.6592582628906831E-001 Math.Sin(75 deg) == 9.6592582628906820E-001 Math.Cos(30 deg) * Math.Cos(45 deg) - Math.Sin(30 deg) * Math.Sin(45 deg) == 2.5881904510252085E-001 Math.Cos(75 deg) == 2.5881904510252096E-001 */

Windows 98, Windows 2000 SP4, Windows CE, Windows Millennium Edition, Windows Mobile for Pocket PC, Windows Mobile for Smartphone, Windows Server 2003, Windows XP Media Center Edition, Windows XP Professional x64 Edition, Windows XP SP2, Windows XP Starter Edition
開発プラットフォームの中には、.NET Framework によってサポートされていないバージョンがあります。サポートされているバージョンについては、「システム要件」を参照してください。


Weblioに収録されているすべての辞書からMath.Cos メソッドを検索する場合は、下記のリンクをクリックしてください。

- Math.Cos メソッドのページへのリンク