等価回路

抵抗

電気系と機械系の要素では、電圧

- 直列接続回路
図.3 (a-1)は、2つの素子、 電源や回路素子を含む回路網(図.4 (a))中の任意の2点間に現れる電位差が 理想的な抵抗器は電気抵抗成分 理想的なインダクタはインダクタンス 理想的なコンデンサは静電容量 水晶振動子は水晶の結晶に生じる圧電現象を利用した素子で、その弾性的性質は質量、機械コンプライアンスで決まる固有振動数を持つ。この固有振動数と同じ周波数の電界を加えると共振することを利用し、周波数精度の高い発振回路を構成する部品として用いられる[37]。
等価回路としては、水晶の質量がインダクタンス ダイオードは p 型半導体と n 型半導体を接合した2端子の部品であり、それぞれアノード(A)端子、カソード(K)端子と呼ぶ。カソードに対してアノード端子が高電位[注釈 9]になると電流が流れ、逆の電圧[注釈 10]になると電流が流れないという整流作用を持つ。理想的な特性では、順方向電圧の場合は導通状態になり、逆方向電圧の場合は電流が遮断される(理想ダイオード)[41]。
しかし、実際の素子ではこの電圧と電流の関係は非線形であり、さらに pn 接合の拡散電位のために順方向電圧は所定の電圧以上でなければ電流が流れ始めない(シリコンで約0.5 - 0.7V、ゲルマニウムで約0.2 - 0.4V[42])。
これらを考慮した折れ線近似等価回路(図.9 (b))では、理想ダイオード
トランジスタの直流増幅に着目した等価回路は、pnpトランジスタは図.10、npnトランジスタは図.11 のようになる。
素子の構造上、E-B、B-C端子間に、用いる電流方向(バイアス)に対してそれぞれダイオードを順・逆方向に接続したものと同等であると考えられる。したがって、pnp型トランジスタ、npn型トランジスタでは異なる構成になる。コレクタ電流はエミッタ電流の 小信号等価回路は、トランジスタを適切なバイアス状態にした場合の交流小信号に対する振る舞いを近似するために用いられる。T型等価回路、hパラメータ(ハイブリッドパラメータ)を用いた回路があり、いずれの等価回路においても交流信号に対する動作であるので pnp型トランジスタ、npn型トランジスタによる区別は無い。
トランジスタの各端子に流れる電流を、ベース電流
hパラメータによる等価回路は、4端子回路における入出力の電流電圧関係をそのまま示したものであり、等価回路の構成としては pnp/npn型による違いや接地方式による違いは無く統一的に扱うことが出来る。回路構成と各パラメータの関係は図.13 および下式の通りである[46]。
小信号等価回路において、G-S 間の電圧 オペアンプ(演算増幅器)は、図.15 (a)の回路記号で表され、反転入力と非反転入力の2つの入力端子を持ち、それぞれの入力電圧を 理想的な変圧器では、巻線自体の損失をゼロ、磁気回路の損失をゼロ(磁気特性が線形・漏れ磁束無し)と見なす。
1次巻線と2次巻線の巻回数がそれぞれ 理想変圧器とは異なり、実際の変圧器では鉄芯の磁気特性(ヒステリシス特性や励磁電流の必要性)の影響により、交番励磁するための電力(鉄損)が生じる。励磁するための電流は歪み波電流であるが、等価的には実効値が等しい正弦波電流 誘導電動機は固定子巻線で生成する回転磁界により、回転子巻線に電流を発生させることでトルクを生じる。固定子を1次巻線、回転子を2次巻線とすれば動作は変圧器と同様の解析ができる。ただし、変圧器とは異なり、1次、2次の相数の違い、閉磁路ではないこと、2次側負荷が機械出力であること、回転子のすべり( ブラシ付き直流モータは、N極とS極のペアの永久磁石で構成するステータと、コイルを巻き電磁石となるように構成するロータ(回転子)からなる。ロータは回転する毎に電磁石の極性が逆になるように電極(ブラシ)が配される。
電気部品としては1つの記号として表され、直流電源 摩擦による抵抗や粘性のある流体中を速度 質量 ばねの一端を固定し、他端に力 回転体を摩擦抵抗や粘性のある流体中を角速度 慣性モーメント ばねの一端を固定し、他端に回転力(トルク) 媒質が流動する通路中に、動きを妨げるように繊維を詰めたり隙間を設けたりすると粘性のために媒質の動きは妨げられる。
媒質を体積速度 寸法が波長に比べて小さく、両端が開放され、その空間内の媒質が体積一定のまま動く状態にあるとき、一方の断面面積 波長より寸法が小さい容積 伝熱工学における等価回路の適用は、熱流量 熱回路網とは、温度、熱源、熱抵抗、熱容量の関係を回路図としてモデル化したものである[117]。電気回路の場合と同様の計算で解くことが出来る。
単純な例として、2点の温度( 熱容量が無視できない過渡状態では、熱抵抗と熱容量を回路として用い、過渡熱インピーダンスと呼ぶ[119]。過渡熱インピーダンスのモデルとしては、ラダー型のCauerモデル(図.31 (a))[注釈 26]、チェーン型のFosterモデル(図.31 (b))がある[120][119]。ただし、熱抵抗、熱容量のいずれも材質や形状などが理想状態からずれることが多く、モデリングの合わせ込みが必要となる[121][注釈 27]。
例えば、電磁石のように鉄芯にコイルを巻いて電流を流すことで磁束を発生させることを考えたとき、磁束の通る磁路を磁気回路という(図.32 (a))[123][124]。
磁束 体組織の解析や生体運動の解析を行う上で、人体を抵抗成分や静電容量成分などから構成される生体インピーダンスとして解析する手法がある[129]。
簡単な例では、生体組織が細胞と細胞外液から構成され、細胞が細胞膜と細胞内液から構成されることから、細胞膜が持つ静電容量成分、細胞内液・細胞外液が持つ抵抗成分の回路網として表すことができる(図.33 (a)[130][131]、(b)[132])。この等価回路を用いて体組成計における体脂肪率等の計測が行われる[131]。
なお、図.33 の2つの等価回路では、それぞれの素子の抵抗値、静電容量を適切に設定することで特性は一致する[注釈 29]。
循環器医学におけるウィンドケッセルモデルは、心臓の拍動による動脈血の血圧波形を説明するために導入されたモデルである。大動脈を収縮する槽、末梢血管を一定の流路抵抗を持つとみなすことを基本としている[133][134]。
最も簡単なモデルでは、動脈のコンプライアンスと末梢血管の抵抗を模擬し、2要素モデルとよばれる(図.35 (a))。心臓の拍動圧を アラン・ロイド・ホジキンとアンドリュー・フィールディング・ハクスリーは、イカの巨大軸索神経の活動電位伝搬の研究により、神経繊維膜の電気的等価回路(ホジキン-ハクスリー・モデル)を提唱した。これは、神経の活動電位伝搬はナトリウムイオンとカリウムイオンが担っていることを明らかにしたものである[135][136][137][注釈 30]。
図.36 において、神経繊維膜の膜電位(磁気回路
ウィンドケッセルモデル
心臓(Heart)がポンプ(Pump)、弾性動脈(Elastic arteries)が空気室(Windkessel)に相当する
- Equivalent circuitのページへのリンク