チェビシェフフィルタ
(Chebyshev filter から転送)
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2025/02/04 18:50 UTC 版)
チェビシェフフィルタ(英: Chebyshev filter)は、フィルタの一種で、バターワースフィルタに比べてロールオフが急勾配で、通過帯域にリップル (en) がある場合(第一種)と除去帯域にリップルがある場合(第二種)がある。チェビシェフフィルタは、理想的なフィルタ特性と実装との間で誤差を最小化するという特徴を持つが、通過帯域にリップルがある。その数学的特性がチェビシェフ多項式から導き出されたものであることから、パフヌティ・チェビシェフの名を冠せられている。
チェビシェフフィルタには通過帯域のリップルがつきものであるため、方形波など高調波を含む信号については通過帯域の応答特性、特に群遅延特性が劣るチェビシェフフィルタの使用は難しい[1]。一方、リップルは通過帯域におけるVSWR(電圧定在波比)を保証する作用があるため、他の回路に接続した際にバターワースフィルタなどよりも信号のあばれが少なくなる。[2]
また、特定のフィルタ回路構成を指す用語ではなく、フィルタの応答特性を指す用語であるため、チェビシェフフィルタ特性(あるいはチェビシェフ特性)と呼ぶ場合もある。
第一種チェビシェフフィルタ



群遅延は位相を角周波数について微分したものと定義され、信号に含まれる異なる周波数成分の位相差による歪みの尺度である。


左図は ε=0.1 の五次第二種チェビシェフフィルタの利得と群遅延を示したものである。利得を見ると除去帯域にリップルがあるが、通過帯域には見られない。
実装
Cauer形
受動回路でローパスのチェビシェフフィルタを実装するには、Cauer形のトポロジーを使う。n次チェビシェフフィルタのコイルとコンデンサの値は以下の式で計算できる。
計算された Gk の値は、右図の分流コンデンサか上の線上のコイルの値となる。あるいはコンデンサとコイルを入れ替えた回路でもよい。
例えば
C1 shunt=G1, L2 top=G2, ...
あるいは
L1 shunt = G1, C1 top=G2, ...
となる。
このようにして得られた回路は正規化ローパスフィルタである。これに周波数変換やインピーダンスのスケーリングを施すと、任意の遮断周波数や帯域幅のハイパスフィルタ、バンドパスフィルタ、バンドエリミネーションフィルタが得られる。
デジタルの場合
多くのアナログのチェビシェフフィルタは、双一次変換を施すことでデジタル(離散時間)の再帰型フィルタに変換される。しかし、デジタルフィルタの帯域幅は有限なので、変換されたチェビシェフフィルタの応答特性には歪みが生じる。代替手法として整合Z変換を使えば、応答特性に歪みは生じない。
他の線形フィルタとの比較
下図はチェビシェフフィルタと他のフィルタの利得を示したものである。いずれも五次のフィルタである。

見ての通り、チェビシェフフィルタはバターワースフィルタよりも傾斜が急だが、楕円フィルタほどではない。ただし、リップルは楕円フィルタよりも少ない。
関連項目
脚注
参考文献
- Daniels, Richard W. (1974年). Approximation Methods for Electronic Filter Design. New York: McGraw-Hill. ISBN 0-07-015308-6
- Williams, Arthur B.; Taylors, Fred J. (1988), Electronic Filter Design Handbook (2nd ed.), New York: McGraw-Hill,
ISBN 0-07-070434-1
- A.B.ウィリアムズ、加藤康雄・監(訳)、1985、『電子フィルタ : 回路設計ハンドブック』原著初版訳、マグロウヒル出版〈マグロウヒル電子回路技術シリーズ〉(原著1981年) ISBN 4895010325
- 渡部和:『線形回路理論』第2版、昭晃堂(電子回路講座 2)(1971年12月)。第5章"フィルタの設計".
- 森栄二 (2001). LCフィルタの設計&製作 : コイルとコンデンサで作るLPF/HPF/BPF/BRFの実際. CQ出版社. ISBN 978-4-7898-3272-4
- 広畑敦 (2003). 周波技術センスアップ101 : 数M〜数百MHzの高周波信号と上手につきあうために. RF design series. CQ出版. ISBN 978-4-7898-3041-6
- チェビシェフフィルタのページへのリンク