指示関数
(集合の特性函数 から転送)
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2022/04/30 16:19 UTC 版)
ナビゲーションに移動 検索に移動
![]() |
この記事は検証可能な参考文献や出典が全く示されていないか、不十分です。2016年3月)
( |
数学において指示関数(しじかんすう、英: indicator function)、集合の定義関数[1]、特性関数(とくせいかんすう、英: characteristic function)は、集合の元がその集合の特定の部分集合に属するかどうかを指定することによって定義される関数である[注釈 1]。
定義
集合 E とその部分集合 A に対して、E の元 x が A に属すならば 1 を、さもなくば 0 を返す二値関数
-
ファジィ集合におけるメンバーシップ関数
メンバーシップ関数は、集合の指示関数をファジィ集合へ拡張したものである。ファジィ論理における「真の度合い」(英語: degree of truth)を表す(真の度合いは確率と混同されるが、概念上別物である)。ある任意の集合 X があるとき、X のメンバーシップ関数は集合 X から区間 [0, 1] の実数値を返す。
注釈
- ^ 確率論においては、累積分布関数のフーリエ変換を「分布の特性関数」と呼ぶため、区別のために「集合の特性関数」を「指示関数」、「分布の特性関数」を単に「特性関数」と読んで区別する傾向が強い。また一般には、「集合の定義関数」を単に「定義関数」と呼ぶことが多いが、これも文脈上の意味が明らかな場合のことである。
- ^ "Dummy variable" が束縛変数のことを指す場合もある。
関連項目
出典
- 指示関数のページへのリンク