逐次線形二次計画法
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2025/05/12 05:08 UTC 版)
![]() | この記事は検証可能な参考文献や出典が全く示されていないか、不十分です。(2017年11月) |
逐次線形二次計画法(ちくじせんけいにじけいかくほう、英: Sequential linear-quadratic programming、略称:SLQP)とは、目的関数および制約条件を二種類の微分可能関数への近似を行う非線形計画問題に対する反復法の一種である。逐次二次計画法(SQP)に類似した解法であるが、逐次線形二次計画法では一連の最適化部分問題を解く手続きを行っている。両者の違いとしては:
- 逐次二次計画法では、各反復において解かれる部分問題が目的関数が二次関数であり、制約条件が線形の式で表される二次計画問題として記述される。
- 逐次線形二次計画法では、各反復において解かれる部分問題が有効制約を求めるための線形計画問題および各反復のステップを決定するための等式制約付き二次計画問題(EQP)の二種類の問題によって記述される。
部分問題の線形計画問題(LP)および等式制約付き二次計画問題(EQP)はこれらの問題を解くソルバーによって効率よく解くことができるため、この分解を用いた逐次線形二次計画法は大規模な最適化問題に対して逐次二次計画法より扱いやすい解法である。
逐次線形二次計画法は準ニュートン法と関連した解法であるとみなされることがあるが、異なった解法である。
基本的なアルゴリズム
ここでは以下の非線形計画問題を考える:
Optimization computes maxima and minima.
一般 | |
---|---|
微分可能 |
凸最小化 | |||||||
---|---|---|---|---|---|---|---|
線形 および 二次 |
|
系列範例 (Paradigms) | |||||
---|---|---|---|---|---|
グラフ理論 |
| ||||
ネットワークフロー (最大流問題) |