複製起点とは? わかりやすく解説

Weblio 辞書 > 同じ種類の言葉 > 生物 > 生物学 > 起点 > 複製起点の意味・解説 

複製起点

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2022/11/05 20:58 UTC 版)

複製起点または複製開始点レプリケーター(ふくせいきてん/かいしてん、: origin of replication, replication origin, replicator)は、ゲノム複製が開始される、ゲノム上の特定の配列である[1]。遺伝物質が世代間で伝達されるためには、細胞分裂に先立ってDNA半保存的複製によって適切な時期に正確に複製され、各娘細胞染色体を全て受け取ることが必要である[2]。この過程は原核生物真核生物などの生物ではDNAの複製、ウイルスの場合はDNAまたはRNA二本鎖RNAウイルスなどの場合)の複製を伴う[3]。娘鎖の合成は複製起点と呼ばれる非連続的な特定の地点から始まり、全てのゲノムDNAが複製されるまで双方向的に進行する。こうしたイベントの基本的性質は共通であるものの、生物は多様な複製開始の制御戦略を進化させている[2]


  1. ^ Technical Glossary Edward K. Wagner, Martinez Hewlett, David Bloom and David Camerini Basic Virology Third Edition, Blackwell publishing, 2007 ISBN 1-4051-4715-6
  2. ^ a b c d e f g h i j k l m n o p q r s t u “Origins of DNA replication”. PLOS Genetics 15 (9): e1008320. (September 2019). doi:10.1371/journal.pgen.1008320. PMC 6742236. PMID 31513569. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6742236/.  Material was copied from this source, which is available under a Creative Commons Attribution 4.0 International License.
  3. ^ “ViralZone: a knowledge resource to understand virus diversity”. Nucleic Acids Research 39 (Database issue): D576-82. (January 2011). doi:10.1093/nar/gkq901. PMC 3013774. PMID 20947564. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3013774/. 
  4. ^ “Versuche über Pflanzenhybriden”. Verhandlungen des naturforschenden Vereines in Brünn. Im Verlage des Vereines. (1866). pp. 3–47. https://www.biodiversitylibrary.org/item/124139#page/133/mode/1up  For the English translation, see: Druery, C.T.; Bateson, William (1901). “Experiments in plant hybridization”. Journal of the Royal Horticultural Society 26: 1–32. http://www.esp.org/foundations/genetics/classical/gm-65.pdf 2009年10月9日閲覧。. 
  5. ^ “Studies on the Chemical Nature of the Substance Inducing Transformation of Pneumococcal Types : Induction of Transformation by a Desoxyribonucleic Acid Fraction Isolated From Pneumococcus Type III”. The Journal of Experimental Medicine 79 (2): 137–58. (February 1944). doi:10.1084/jem.79.2.137. PMC 2135445. PMID 19871359. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2135445/. 
  6. ^ “The structure of DNA”. Cold Spring Harbor Symposia on Quantitative Biology 18: 123–31. (1953). doi:10.1101/sqb.1953.018.01.020. PMID 13168976. 
  7. ^ “The replication of DNA in Escherichia coli”. Proceedings of the National Academy of Sciences of the United States of America 44 (7): 671–82. (July 1958). Bibcode1958PNAS...44..671M. doi:10.1073/pnas.44.7.671. PMC 528642. PMID 16590258. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC528642/. 
  8. ^ “The replication of DNA”. Cold Spring Harbor Symposia on Quantitative Biology 23: 9–12. (1958). doi:10.1101/sqb.1958.023.01.004. PMID 13635537. 
  9. ^ “Enzymatic synthesis of deoxyribonucleic acid. I. Preparation of substrates and partial purification of an enzyme from Escherichia coli”. The Journal of Biological Chemistry 233 (1): 163–70. (July 1958). doi:10.1016/S0021-9258(19)68048-8. PMID 13563462. 
  10. ^ “Principles and concepts of DNA replication in bacteria, archaea, and eukarya”. Cold Spring Harbor Perspectives in Biology 5 (7): a010108. (July 2013). doi:10.1101/cshperspect.a010108. PMC 3685895. PMID 23818497. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3685895/. 
  11. ^ “Genomic instability in cancer”. Cold Spring Harbor Perspectives in Biology 5 (3): a012914. (March 2013). doi:10.1101/cshperspect.a012914. PMC 3578360. PMID 23335075. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3578360/. 
  12. ^ a b “Replication initiation and genome instability: a crossroads for DNA and RNA synthesis”. Cellular and Molecular Life Sciences 71 (23): 4545–59. (December 2014). doi:10.1007/s00018-014-1721-1. PMC 6289259. PMID 25238783. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6289259/. 
  13. ^ “Regulating DNA replication in eukarya”. Cold Spring Harbor Perspectives in Biology 5 (9): a012930. (September 2013). doi:10.1101/cshperspect.a012930. PMC 3753713. PMID 23838438. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3753713/. 
  14. ^ “Cell cycle regulation of DNA replication”. Annual Review of Genetics 41: 237–80. (2007). doi:10.1146/annurev.genet.41.110306.130308. PMC 2292467. PMID 17630848. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2292467/. 
  15. ^ a b “Transcription-replication conflicts: how they occur and how they are resolved”. Nature Reviews. Molecular Cell Biology 17 (9): 553–63. (September 2016). doi:10.1038/nrm.2016.88. hdl:11441/101680. PMID 27435505. https://idus.us.es/handle//11441/101680. 
  16. ^ “Base-stacking and base-pairing contributions into thermal stability of the DNA double helix”. Nucleic Acids Research 34 (2): 564–74. (2006). doi:10.1093/nar/gkj454. PMC 1360284. PMID 16449200. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1360284/. 
  17. ^ a b c “DNA replication origins”. Cold Spring Harbor Perspectives in Biology 5 (10): a010116. (October 2013). doi:10.1101/cshperspect.a010116. PMC 3783049. PMID 23838439. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3783049/. 
  18. ^ a b “SnapShot: Origins of DNA replication”. Cell 161 (2): 418–418.e1. (April 2015). doi:10.1016/j.cell.2015.03.043. PMID 25860614. 
  19. ^ “To promote and protect: coordinating DNA replication and transcription for genome stability”. Epigenetics 4 (6): 362–5. (August 2009). doi:10.4161/epi.4.6.9712. PMID 19736523. 
  20. ^ a b “DNA replication fork pause sites dependent on transcription”. Science 272 (5264): 1030–3. (May 1996). Bibcode1996Sci...272.1030D. doi:10.1126/science.272.5264.1030. PMID 8638128. 
  21. ^ a b “The nature of mutations induced by replication–transcription collisions”. Nature 535 (7610): 178–81. (July 2016). Bibcode2016Natur.535..178S. doi:10.1038/nature18316. PMC 4945378. PMID 27362223. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4945378/. 
  22. ^ “Head-on collision between a DNA replication apparatus and RNA polymerase transcription complex”. Science 267 (5201): 1131–7. (February 1995). Bibcode1995Sci...267.1131L. doi:10.1126/science.7855590. PMID 7855590. 
  23. ^ “Highly transcribed RNA polymerase II genes are impediments to replication fork progression in Saccharomyces cerevisiae”. Molecular Cell 34 (6): 722–34. (June 2009). doi:10.1016/j.molcel.2009.05.022. PMC 2728070. PMID 19560424. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2728070/. 
  24. ^ a b c “On the Regulation of Dna Replication in Bacteria”. Cold Spring Harbor Symposia on Quantitative Biology 28: 329–348. (1963-01-01). doi:10.1101/sqb.1963.028.01.048. ISSN 0091-7451. 
  25. ^ “Plasmid incompatibility”. Microbiological Reviews 51 (4): 381–95. (December 1987). doi:10.1128/MMBR.51.4.381-395.1987. PMC 373122. PMID 3325793. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC373122/. 
  26. ^ “Regulating DNA replication in bacteria”. Cold Spring Harbor Perspectives in Biology 5 (4): a012922. (April 2013). doi:10.1101/cshperspect.a012922. PMC 3683904. PMID 23471435. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3683904/. 
  27. ^ a b c “Regulation of Replication Origins”. Advances in Experimental Medicine and Biology 1042: 43–59. (2017). doi:10.1007/978-981-10-6955-0_2. ISBN 978-981-10-6954-3. PMC 6622447. PMID 29357052. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6622447/. 
  28. ^ a b “Mechanisms and regulation of DNA replication initiation in eukaryotes”. Critical Reviews in Biochemistry and Molecular Biology 52 (2): 107–144. (April 2017). doi:10.1080/10409238.2016.1274717. PMC 5545932. PMID 28094588. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5545932/. 
  29. ^ a b c “In search of the holy replicator”. Nature Reviews. Molecular Cell Biology 5 (10): 848–55. (October 2004). doi:10.1038/nrm1495. PMC 1255919. PMID 15459665. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1255919/. 
  30. ^ “The replicon revisited: an old model learns new tricks in metazoan chromosomes”. EMBO Reports 5 (7): 686–91. (July 2004). doi:10.1038/sj.embor.7400185. PMC 1299096. PMID 15229645. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1299096/. 
  31. ^ a b “DNA topology, not DNA sequence, is a critical determinant for Drosophila ORC-DNA binding”. The EMBO Journal 23 (4): 897–907. (February 2004). doi:10.1038/sj.emboj.7600077. PMC 380993. PMID 14765124. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC380993/. 
  32. ^ “Sequence-independent DNA binding and replication initiation by the human origin recognition complex”. Genes & Development 17 (15): 1894–908. (August 2003). doi:10.1101/gad.1084203. PMC 196240. PMID 12897055. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC196240/. 
  33. ^ a b “A WD-repeat protein stabilizes ORC binding to chromatin”. Molecular Cell 40 (1): 99–111. (October 2010). doi:10.1016/j.molcel.2010.09.021. PMC 5201136. PMID 20932478. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5201136/. 
  34. ^ a b “Nucleosomes in the neighborhood: new roles for chromatin modifications in replication origin control”. Epigenetics 6 (5): 552–9. (May 2011). doi:10.4161/epi.6.5.15082. PMC 3230546. PMID 21364325. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3230546/. 
  35. ^ a b c “Order from clutter: selective interactions at mammalian replication origins”. Nature Reviews. Genetics 18 (2): 101–116. (February 2017). doi:10.1038/nrg.2016.141. PMC 6596300. PMID 27867195. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6596300/. 
  36. ^ a b “DNA replication origin activation in space and time”. Nature Reviews. Molecular Cell Biology 16 (6): 360–74. (June 2015). doi:10.1038/nrm4002. PMID 25999062. 
  37. ^ a b c “DNA replication origins-where do we begin?”. Genes & Development 30 (15): 1683–97. (August 2016). doi:10.1101/gad.285114.116. PMC 5002974. PMID 27542827. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5002974/. 
  38. ^ “New insights into replication origin characteristics in metazoans”. Cell Cycle 11 (4): 658–67. (February 2012). doi:10.4161/cc.11.4.19097. PMC 3318102. PMID 22373526. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3318102/. 
  39. ^ “R-loops and initiation of DNA replication in human cells: a missing link?”. Frontiers in Genetics 6: 158. (2015). doi:10.3389/fgene.2015.00158. PMC 4412123. PMID 25972891. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4412123/. 
  40. ^ “The replication initiation determinant protein (RepID) modulates replication by recruiting CUL4 to chromatin”. Nature Communications 9 (1): 2782. (July 2018). Bibcode2018NatCo...9.2782J. doi:10.1038/s41467-018-05177-6. PMC 6050238. PMID 30018425. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6050238/. 
  41. ^ “Construction, replication, and chromatin structure of TRP1 RI circle, a multiple-copy synthetic plasmid derived from Saccharomyces cerevisiae chromosomal DNA”. Molecular and Cellular Biology 2 (3): 221–32. (March 1982). doi:10.1128/mcb.2.3.221. PMC 369780. PMID 6287231. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC369780/. 
  42. ^ “A yeast-Escherichia coli shuttle vector containing the M13 origin of replication”. Plasmid 23 (2): 159–62. (March 1990). doi:10.1016/0147-619x(90)90036-c. PMID 2194231. 
  43. ^ “New yeast/E. coli/Drosophila triple shuttle vectors for efficient generation of Drosophila P element transformation constructs”. Gene 511 (2): 300–5. (December 2012). doi:10.1016/j.gene.2012.09.058. PMID 23026211. 
  44. ^ “Escherichia coli prereplication complex assembly is regulated by dynamic interplay among Fis, IHF and DnaA”. Molecular Microbiology 51 (5): 1347–59. (March 2004). doi:10.1046/j.1365-2958.2003.03906.x. PMID 14982629. 
  45. ^ a b “Where does bacterial replication start? Rules for predicting the oriC region”. Nucleic Acids Research 32 (13): 3781–91. (2004). doi:10.1093/nar/gkh699. PMC 506792. PMID 15258248. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC506792/. 
  46. ^ a b c “DoriC 10.0: an updated database of replication origins in prokaryotic genomes including chromosomes and plasmids”. Nucleic Acids Research 47 (D1): D74–D77. (January 2019). doi:10.1093/nar/gky1014. PMC 6323995. PMID 30364951. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6323995/. 
  47. ^ a b “The dnaA protein complex with the E. coli chromosomal replication origin (oriC) and other DNA sites”. Cell 38 (3): 889–900. (October 1984). doi:10.1016/0092-8674(84)90284-8. PMID 6091903. 
  48. ^ “Purified dnaA protein in initiation of replication at the Escherichia coli chromosomal origin of replication”. Proceedings of the National Academy of Sciences of the United States of America 80 (19): 5817–21. (October 1983). Bibcode1983PNAS...80.5817F. doi:10.1073/pnas.80.19.5817. PMC 390166. PMID 6310593. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC390166/. 
  49. ^ “Structural elements of the Streptomyces oriC region and their interactions with the DnaA protein”. Microbiology 144 ( Pt 5) (5): 1281–90. (May 1998). doi:10.1099/00221287-144-5-1281. PMID 9611803. 
  50. ^ “Structural and thermodynamic signatures of DNA recognition by Mycobacterium tuberculosis DnaA”. Journal of Molecular Biology 410 (3): 461–76. (July 2011). doi:10.1016/j.jmb.2011.05.007. PMID 21620858. 
  51. ^ “Mechanisms for initiating cellular DNA replication”. Annual Review of Biochemistry 82: 25–54. (2013). doi:10.1146/annurev-biochem-052610-094414. PMC 4696014. PMID 23746253. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4696014/. 
  52. ^ “oriC-encoded instructions for the initiation of bacterial chromosome replication”. Frontiers in Microbiology 5: 735. (2014). doi:10.3389/fmicb.2014.00735. PMC 4285127. PMID 25610430. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4285127/. 
  53. ^ a b “Functional domains of DnaA proteins”. Biochimie 81 (8–9): 819–25. (1999). doi:10.1016/s0300-9084(99)00215-1. PMID 10572294. 
  54. ^ “The Escherichia coli dnaA gene: four functional domains”. Journal of Molecular Biology 274 (4): 546–61. (December 1997). doi:10.1006/jmbi.1997.1425. PMID 9417934. 
  55. ^ “Mechanism of origin unwinding: sequential binding of DnaA to double- and single-stranded DNA”. The EMBO Journal 20 (6): 1469–76. (March 2001). doi:10.1093/emboj/20.6.1469. PMC 145534. PMID 11250912. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC145534/. 
  56. ^ a b “Structural basis of replication origin recognition by the DnaA protein”. Nucleic Acids Research 31 (8): 2077–86. (April 2003). doi:10.1093/nar/gkg309. PMC 153737. PMID 12682358. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC153737/. 
  57. ^ a b c “DNA stretching by bacterial initiators promotes replication origin opening”. Nature 478 (7368): 209–13. (October 2011). Bibcode2011Natur.478..209D. doi:10.1038/nature10455. PMC 3192921. PMID 21964332. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3192921/. 
  58. ^ a b “The structure of bacterial DnaA: implications for general mechanisms underlying DNA replication initiation”. The EMBO Journal 21 (18): 4763–73. (September 2002). doi:10.1093/emboj/cdf496. PMC 126292. PMID 12234917. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC126292/. 
  59. ^ “Threonine 435 of Escherichia coli DnaA protein confers sequence-specific DNA binding activity”. The Journal of Biological Chemistry 272 (37): 23017–24. (September 1997). doi:10.1074/jbc.272.37.23017. PMID 9287298. 
  60. ^ “A model for initiation at origins of DNA replication”. Cell 54 (7): 915–8. (September 1988). doi:10.1016/0092-8674(88)90102-x. PMID 2843291. 
  61. ^ “Two oppositely oriented arrays of low-affinity recognition sites in oriC guide progressive binding of DnaA during Escherichia coli pre-RC assembly”. Molecular Microbiology 82 (2): 475–88. (October 2011). doi:10.1111/j.1365-2958.2011.07827.x. PMC 3192301. PMID 21895796. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3192301/. 
  62. ^ “Architecture of bacterial replication initiation complexes: orisomes from four unrelated bacteria”. The Biochemical Journal 389 (Pt 2): 471–81. (July 2005). doi:10.1042/BJ20050143. PMC 1175125. PMID 15790315. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1175125/. 
  63. ^ a b “Origin recognition is the predominant role for DnaA-ATP in initiation of chromosome replication”. Nucleic Acids Research 46 (12): 6140–6151. (July 2018). doi:10.1093/nar/gky457. PMC 6158602. PMID 29800247. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6158602/. 
  64. ^ “Regulatory dynamics in the ternary DnaA complex for initiation of chromosomal replication in Escherichia coli”. Nucleic Acids Research 45 (21): 12354–12373. (December 2017). doi:10.1093/nar/gkx914. PMC 5716108. PMID 29040689. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5716108/. 
  65. ^ “Sites of dnaA protein-binding in the replication origin of the Escherichia coli K-12 chromosome”. Journal of Molecular Biology 184 (3): 529–33. (August 1985). doi:10.1016/0022-2836(85)90299-2. PMID 2995681. 
  66. ^ “Ordered and sequential binding of DnaA protein to oriC, the chromosomal origin of Escherichia coli”. The Journal of Biological Chemistry 271 (29): 17035–40. (July 1996). doi:10.1074/jbc.271.29.17035. PMID 8663334. 
  67. ^ “Interaction of the initiator protein DnaA of Escherichia coli with its DNA target”. The Journal of Biological Chemistry 270 (29): 17622–6. (July 1995). doi:10.1074/jbc.270.29.17622. PMID 7615570. 
  68. ^ “DnaA protein binding to individual DnaA boxes in the Escherichia coli replication origin, oriC”. The EMBO Journal 16 (21): 6574–83. (November 1997). doi:10.1093/emboj/16.21.6574. PMC 1170261. PMID 9351837. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1170261/. 
  69. ^ “In vivo studies of DnaA binding to the origin of replication of Escherichia coli”. The EMBO Journal 8 (3): 989–93. (March 1989). doi:10.1002/j.1460-2075.1989.tb03462.x. PMC 400901. PMID 2542031. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC400901/. 
  70. ^ “Two discriminatory binding sites in the Escherichia coli replication origin are required for DNA strand opening by initiator DnaA-ATP”. Proceedings of the National Academy of Sciences of the United States of America 101 (9): 2811–6. (March 2004). Bibcode2004PNAS..101.2811M. doi:10.1073/pnas.0400340101. PMC 365702. PMID 14978287. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC365702/. 
  71. ^ “Formation of an ATP-DnaA-specific initiation complex requires DnaA Arginine 285, a conserved motif in the AAA+ protein family”. The Journal of Biological Chemistry 280 (29): 27420–30. (July 2005). doi:10.1074/jbc.M502764200. PMID 15901724. 
  72. ^ “ATP- and ADP-dnaA protein, a molecular switch in gene regulation”. The EMBO Journal 18 (21): 6169–76. (November 1999). doi:10.1093/emboj/18.21.6169. PMC 1171680. PMID 10545126. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1171680/. 
  73. ^ “Bacterial origin recognition complexes direct assembly of higher-order DnaA oligomeric structures”. Proceedings of the National Academy of Sciences of the United States of America 106 (44): 18479–84. (November 2009). Bibcode2009PNAS..10618479M. doi:10.1073/pnas.0909472106. PMC 2773971. PMID 19833870. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2773971/. 
  74. ^ a b c “Structural basis for ATP-dependent DnaA assembly and replication-origin remodeling”. Nature Structural & Molecular Biology 13 (8): 676–83. (August 2006). doi:10.1038/nsmb1115. PMID 16829961. 
  75. ^ “Topological characterization of the DnaA-oriC complex using single-molecule nanomanipuation”. Nucleic Acids Research 40 (15): 7375–83. (August 2012). doi:10.1093/nar/gks371. PMC 3424547. PMID 22581769. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3424547/. 
  76. ^ a b “The bacterial DnaA-trio replication origin element specifies single-stranded DNA initiator binding”. Nature 534 (7607): 412–6. (June 2016). Bibcode2016Natur.534..412R. doi:10.1038/nature17962. PMC 4913881. PMID 27281207. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4913881/. 
  77. ^ “Origin remodeling and opening in bacteria rely on distinct assembly states of the DnaA initiator”. The Journal of Biological Chemistry 285 (36): 28229–39. (September 2010). doi:10.1074/jbc.M110.147975. PMC 2934688. PMID 20595381. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2934688/. 
  78. ^ “Highly organized DnaA-oriC complexes recruit the single-stranded DNA for replication initiation”. Nucleic Acids Research 40 (4): 1648–65. (February 2012). doi:10.1093/nar/gkr832. PMC 3287180. PMID 22053082. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3287180/. 
  79. ^ “Bacterial mode of replication with eukaryotic-like machinery in a hyperthermophilic archaeon”. Science 288 (5474): 2212–5. (June 2000). Bibcode2000Sci...288.2212M. doi:10.1126/science.288.5474.2212. PMID 10864870. 
  80. ^ a b c “Genetic and physical mapping of DNA replication origins in Haloferax volcanii”. PLOS Genetics 3 (5): e77. (May 2007). doi:10.1371/journal.pgen.0030077. PMC 1868953. PMID 17511521. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1868953/. 
  81. ^ “Accelerated growth in the absence of DNA replication origins”. Nature 503 (7477): 544–547. (November 2013). Bibcode2013Natur.503..544H. doi:10.1038/nature12650. PMC 3843117. PMID 24185008. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3843117/. 
  82. ^ “Multiple replication origins with diverse control mechanisms in Haloarcula hispanica”. Nucleic Acids Research 42 (4): 2282–94. (February 2014). doi:10.1093/nar/gkt1214. PMC 3936714. PMID 24271389. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3936714/. 
  83. ^ “Mapping of active replication origins in vivo in thaum- and euryarchaeal replicons”. Molecular Microbiology 90 (3): 538–50. (November 2013). doi:10.1111/mmi.12382. PMID 23991938. 
  84. ^ “Four chromosome replication origins in the archaeon Pyrobaculum calidifontis”. Molecular Microbiology 85 (5): 986–95. (September 2012). doi:10.1111/j.1365-2958.2012.08155.x. PMID 22812406. 
  85. ^ a b c d e f g h i j “Identification of two origins of replication in the single chromosome of the archaeon Sulfolobus solfataricus”. Cell 116 (1): 25–38. (January 2004). doi:10.1016/s0092-8674(03)01034-1. PMID 14718164. 
  86. ^ a b “Three replication origins in Sulfolobus species: synchronous initiation of chromosome replication and asynchronous termination”. Proceedings of the National Academy of Sciences of the United States of America 101 (18): 7046–51. (May 2004). Bibcode2004PNAS..101.7046L. doi:10.1073/pnas.0400656101. PMC 406463. PMID 15107501. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC406463/. 
  87. ^ “Initiation of DNA Replication in the Archaea”. Advances in Experimental Medicine and Biology 1042: 99–115. (2017). doi:10.1007/978-981-10-6955-0_5. ISBN 978-981-10-6954-3. PMID 29357055. 
  88. ^ “Diversity of DNA Replication in the Archaea”. Genes 8 (2): 56. (January 2017). doi:10.3390/genes8020056. PMC 5333045. PMID 28146124. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5333045/. 
  89. ^ “DNA replication origins in archaea”. Frontiers in Microbiology 5: 179. (2014). doi:10.3389/fmicb.2014.00179. PMC 4010727. PMID 24808892. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4010727/. 
  90. ^ “In vivo interactions of archaeal Cdc6/Orc1 and minichromosome maintenance proteins with the replication origin”. Proceedings of the National Academy of Sciences of the United States of America 98 (20): 11152–7. (September 2001). Bibcode2001PNAS...9811152M. doi:10.1073/pnas.191387498. PMC 58699. PMID 11562464. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC58699/. 
  91. ^ “Diversity and evolution of multiple orc/cdc6-adjacent replication origins in haloarchaea”. BMC Genomics 13: 478. (September 2012). doi:10.1186/1471-2164-13-478. PMC 3528665. PMID 22978470. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3528665/. 
  92. ^ “Archaeal orc1/cdc6 proteins”. The Eukaryotic Replisome: A Guide to Protein Structure and Function. Subcellular Biochemistry. 62. (2012). pp. 59–69. doi:10.1007/978-94-007-4572-8_4. ISBN 978-94-007-4571-1. PMID 22918580 
  93. ^ a b c d e “Specificity and function of archaeal DNA replication initiator proteins”. Cell Reports 3 (2): 485–96. (February 2013). doi:10.1016/j.celrep.2013.01.002. PMC 3607249. PMID 23375370. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3607249/. 
  94. ^ a b c d “Biochemical analysis of a DNA replication origin in the archaeon Aeropyrum pernix”. Journal of Molecular Biology 363 (2): 355–69. (October 2006). doi:10.1016/j.jmb.2006.07.076. PMID 16978641. 
  95. ^ a b “Extrachromosomal element capture and the evolution of multiple replication origins in archaeal chromosomes”. Proceedings of the National Academy of Sciences of the United States of America 104 (14): 5806–11. (April 2007). Bibcode2007PNAS..104.5806R. doi:10.1073/pnas.0700206104. PMC 1851573. PMID 17392430. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1851573/. 
  96. ^ a b c “Sister chromatid junctions in the hyperthermophilic archaeon Sulfolobus solfataricus”. The EMBO Journal 26 (3): 816–24. (February 2007). doi:10.1038/sj.emboj.7601529. PMC 1794387. PMID 17255945. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1794387/. 
  97. ^ a b c d e f g “Replication origin recognition and deformation by a heterodimeric archaeal Orc1 complex”. Science 317 (5842): 1210–3. (August 2007). Bibcode2007Sci...317.1210D. doi:10.1126/science.1143690. PMID 17761879. 
  98. ^ a b c d e f “Structural basis of DNA replication origin recognition by an ORC protein”. Science 317 (5842): 1213–6. (August 2007). Bibcode2007Sci...317.1213G. doi:10.1126/science.1143664. PMID 17761880. 
  99. ^ “Biochemical characterization of Cdc6/Orc1 binding to the replication origin of the euryarchaeon Methanothermobacter thermoautotrophicus”. Nucleic Acids Research 32 (16): 4821–32. (2004). doi:10.1093/nar/gkh819. PMC 519113. PMID 15358831. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC519113/. 
  100. ^ “Structure and function of Cdc6/Cdc18: implications for origin recognition and checkpoint control”. Molecular Cell 6 (3): 637–48. (September 2000). doi:10.1016/s1097-2765(00)00062-9. PMID 11030343. 
  101. ^ “Conformational changes induced by nucleotide binding in Cdc6/ORC from Aeropyrum pernix”. Journal of Molecular Biology 343 (3): 547–57. (October 2004). doi:10.1016/j.jmb.2004.08.044. PMID 15465044. 
  102. ^ “Identification of short 'eukaryotic' Okazaki fragments synthesized from a prokaryotic replication origin”. EMBO Reports 4 (2): 154–8. (February 2003). doi:10.1038/sj.embor.embor732. PMC 1315830. PMID 12612604. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1315830/. 
  103. ^ “An archaeal chromosomal autonomously replicating sequence element from an extreme halophile, Halobacterium sp. strain NRC-1”. Journal of Bacteriology 185 (20): 5959–66. (October 2003). doi:10.1128/jb.185.20.5959-5966.2003. PMC 225043. PMID 14526006. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC225043/. 
  104. ^ “Interactions between the archaeal Cdc6 and MCM proteins modulate their biochemical properties”. Nucleic Acids Research 33 (15): 4940–50. (2005). doi:10.1093/nar/gki807. PMC 1201339. PMID 16150924. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1201339/. 
  105. ^ “Mechanism of Archaeal MCM Helicase Recruitment to DNA Replication Origins”. Molecular Cell 61 (2): 287–96. (January 2016). doi:10.1016/j.molcel.2015.12.005. PMC 4724246. PMID 26725007. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4724246/. 
  106. ^ “Molecular determinants of origin discrimination by Orc1 initiators in archaea”. Nucleic Acids Research 39 (9): 3621–31. (May 2011). doi:10.1093/nar/gkq1308. PMC 3089459. PMID 21227921. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3089459/. 
  107. ^ “Localized melting of duplex DNA by Cdc6/Orc1 at the DNA replication origin in the hyperthermophilic archaeon Pyrococcus furiosus”. Extremophiles 14 (1): 21–31. (January 2010). doi:10.1007/s00792-009-0284-9. PMID 19787415. 
  108. ^ “Role of the conserved Sir3-BAH domain in nucleosome binding and silent chromatin assembly”. Molecular Cell 28 (6): 1015–28. (December 2007). doi:10.1016/j.molcel.2007.12.004. PMID 18158899. 
  109. ^ a b “The BAH domain of ORC1 links H4K20me2 to DNA replication licensing and Meier-Gorlin syndrome”. Nature 484 (7392): 115–9. (March 2012). Bibcode2012Natur.484..115K. doi:10.1038/nature10956. PMC 3321094. PMID 22398447. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3321094/. 
  110. ^ a b “Mechanisms for initiating cellular DNA replication”. Science 355 (6327): eaah6317. (February 2017). doi:10.1126/science.aah6317. PMID 28209641. 
  111. ^ a b “MCM2-7 form double hexamers at licensed origins in Xenopus egg extract”. The Journal of Biological Chemistry 286 (13): 11855–64. (April 2011). doi:10.1074/jbc.M110.199521. PMC 3064236. PMID 21282109. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3064236/. 
  112. ^ a b “Concerted loading of Mcm2-7 double hexamers around DNA during DNA replication origin licensing”. Cell 139 (4): 719–30. (November 2009). doi:10.1016/j.cell.2009.10.015. PMC 2804858. PMID 19896182. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2804858/. 
  113. ^ a b “A double-hexameric MCM2-7 complex is loaded onto origin DNA during licensing of eukaryotic DNA replication”. Proceedings of the National Academy of Sciences of the United States of America 106 (48): 20240–5. (December 2009). Bibcode2009PNAS..10620240E. doi:10.1073/pnas.0911500106. PMC 2787165. PMID 19910535. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2787165/. 
  114. ^ “Dormant origins licensed by excess Mcm2-7 are required for human cells to survive replicative stress”. Genes & Development 21 (24): 3331–41. (December 2007). doi:10.1101/gad.457807. PMC 2113033. PMID 18079179. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2113033/. 
  115. ^ “Excess MCM proteins protect human cells from replicative stress by licensing backup origins of replication”. Proceedings of the National Academy of Sciences of the United States of America 105 (26): 8956–61. (July 2008). Bibcode2008PNAS..105.8956I. doi:10.1073/pnas.0803978105. PMC 2449346. PMID 18579778. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2449346/. 
  116. ^ Moiseeva, Tatiana N.; Yin, Yandong; Calderon, Michael J.; Qian, Chenao; Schamus-Haynes, Sandra; Sugitani, Norie; Osmanbeyoglu, Hatice U.; Rothenberg, Eli et al. (2019-07-02). “An ATR and CHK1 kinase signaling mechanism that limits origin firing during unperturbed DNA replication”. Proceedings of the National Academy of Sciences of the United States of America 116 (27): 13374–13383. doi:10.1073/pnas.1903418116. ISSN 1091-6490. PMC 6613105. PMID 31209037. https://pubmed.ncbi.nlm.nih.gov/31209037/. 
  117. ^ Moiseeva, Tatiana N.; Bakkenist, Christopher J. (September 2019). “Dormant origin signaling during unperturbed replication”. DNA repair 81: 102655. doi:10.1016/j.dnarep.2019.102655. ISSN 1568-7856. PMC 6764875. PMID 31311769. https://pubmed.ncbi.nlm.nih.gov/31311769/. 
  118. ^ “Isolation and characterisation of a yeast chromosomal replicator”. Nature 282 (5734): 39–43. (November 1979). Bibcode1979Natur.282...39S. doi:10.1038/282039a0. PMID 388229. 
  119. ^ “The in vivo replication origin of the yeast 2 microns plasmid”. Cell 51 (3): 473–81. (November 1987). doi:10.1016/0092-8674(87)90643-x. PMID 3311385. 
  120. ^ “The localization of replication origins on ARS plasmids in S. cerevisiae”. Cell 51 (3): 463–71. (November 1987). doi:10.1016/0092-8674(87)90642-8. PMID 2822257. 
  121. ^ a b “A yeast chromosomal origin of DNA replication defined by multiple functional elements”. Science 255 (5046): 817–23. (February 1992). Bibcode1992Sci...255..817M. doi:10.1126/science.1536007. PMID 1536007. 
  122. ^ “Functional conservation of multiple elements in yeast chromosomal replicators”. Molecular and Cellular Biology 14 (11): 7643–51. (November 1994). doi:10.1128/mcb.14.11.7643. PMC 359300. PMID 7935478. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC359300/. 
  123. ^ “Localization and sequence analysis of yeast origins of DNA replication”. Cold Spring Harbor Symposia on Quantitative Biology 47 Pt 2: 1165–73. (1983). doi:10.1101/sqb.1983.047.01.132. PMID 6345070. 
  124. ^ “Deletion mutations affecting autonomously replicating sequence ARS1 of Saccharomyces cerevisiae”. Molecular and Cellular Biology 4 (11): 2455–66. (November 1984). doi:10.1128/mcb.4.11.2455. PMC 369077. PMID 6392851. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC369077/. 
  125. ^ “The origin recognition complex interacts with a bipartite DNA binding site within yeast replicators”. Proceedings of the National Academy of Sciences of the United States of America 92 (6): 2224–8. (March 1995). Bibcode1995PNAS...92.2224R. doi:10.1073/pnas.92.6.2224. PMC 42456. PMID 7892251. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC42456/. 
  126. ^ “Initiation complex assembly at budding yeast replication origins begins with the recognition of a bipartite sequence by limiting amounts of the initiator, ORC”. The EMBO Journal 14 (11): 2631–41. (June 1995). doi:10.1002/j.1460-2075.1995.tb07261.x. PMC 398377. PMID 7781615. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC398377/. 
  127. ^ “ATP-dependent recognition of eukaryotic origins of DNA replication by a multiprotein complex”. Nature 357 (6374): 128–34. (May 1992). Bibcode1992Natur.357..128B. doi:10.1038/357128a0. PMID 1579162. 
  128. ^ a b c d “Structure of the origin recognition complex bound to DNA replication origin”. Nature 559 (7713): 217–222. (July 2018). Bibcode2018Natur.559..217L. doi:10.1038/s41586-018-0293-x. PMID 29973722. 
  129. ^ “Crystal structure of the eukaryotic origin recognition complex”. Nature 519 (7543): 321–6. (March 2015). Bibcode2015Natur.519..321B. doi:10.1038/nature14239. PMC 4368505. PMID 25762138. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4368505/. 
  130. ^ “Cryo-EM structure of a helicase loading intermediate containing ORC-Cdc6-Cdt1-MCM2-7 bound to DNA”. Nature Structural & Molecular Biology 20 (8): 944–51. (August 2013). doi:10.1038/nsmb.2629. PMC 3735830. PMID 23851460. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3735830/. 
  131. ^ “Specific binding of eukaryotic ORC to DNA replication origins depends on highly conserved basic residues”. Scientific Reports 5: 14929. (October 2015). Bibcode2015NatSR...514929K. doi:10.1038/srep14929. PMC 4601075. PMID 26456755. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4601075/. 
  132. ^ “A yeast replication origin consists of multiple copies of a small conserved sequence”. Cell 53 (3): 441–50. (May 1988). doi:10.1016/0092-8674(88)90164-x. PMID 3284655. 
  133. ^ “The B2 element of the Saccharomyces cerevisiae ARS1 origin of replication requires specific sequences to facilitate pre-RC formation”. Proceedings of the National Academy of Sciences of the United States of America 99 (1): 101–6. (January 2002). Bibcode2002PNAS...99..101W. doi:10.1073/pnas.012578499. PMC 117521. PMID 11756674. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC117521/. 
  134. ^ “Bidirectional eukaryotic DNA replication is established by quasi-symmetrical helicase loading”. Science 357 (6348): 314–318. (July 2017). Bibcode2017Sci...357..314C. doi:10.1126/science.aan0063. PMC 5608077. PMID 28729513. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5608077/. 
  135. ^ “Assembly of a complex containing Cdc45p, replication protein A, and Mcm2p at replication origins controlled by S-phase cyclin-dependent kinases and Cdc7p-Dbf4p kinase”. Molecular and Cellular Biology 20 (9): 3086–96. (May 2000). doi:10.1128/mcb.20.9.3086-3096.2000. PMC 85601. PMID 10757793. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC85601/. 
  136. ^ “Nucleosomes positioned by ORC facilitate the initiation of DNA replication”. Molecular Cell 7 (1): 21–30. (January 2001). doi:10.1016/s1097-2765(01)00151-4. PMID 11172708. 
  137. ^ “Protein-DNA interactions at a yeast replication origin”. Nature 357 (6374): 169–72. (May 1992). Bibcode1992Natur.357..169D. doi:10.1038/357169a0. PMID 1579168. 
  138. ^ “Purification of a yeast protein that binds to origins of DNA replication and a transcriptional silencer”. Proceedings of the National Academy of Sciences of the United States of America 85 (7): 2120–4. (April 1988). Bibcode1988PNAS...85.2120D. doi:10.1073/pnas.85.7.2120. PMC 279940. PMID 3281162. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC279940/. 
  139. ^ “Selectivity of ORC binding sites and the relation to replication timing, fragile sites, and deletions in cancers”. Proceedings of the National Academy of Sciences of the United States of America 113 (33): E4810-9. (August 2016). doi:10.1073/pnas.1609060113. PMC 4995967. PMID 27436900. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4995967/. 
  140. ^ a b “Drosophila ORC localizes to open chromatin and marks sites of cohesin complex loading”. Genome Research 20 (2): 201–11. (February 2010). doi:10.1101/gr.097873.109. PMC 2813476. PMID 19996087. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2813476/. 
  141. ^ a b “Chromatin signatures of the Drosophila replication program”. Genome Research 21 (2): 164–74. (February 2011). doi:10.1101/gr.116038.110. PMC 3032920. PMID 21177973. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3032920/. 
  142. ^ a b “Genome-wide mapping of human DNA-replication origins: levels of transcription at ORC1 sites regulate origin selection and replication timing”. Genome Research 23 (1): 1–11. (January 2013). doi:10.1101/gr.142331.112. PMC 3530669. PMID 23187890. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3530669/. 
  143. ^ “The chromatin environment shapes DNA replication origin organization and defines origin classes”. Genome Research 25 (12): 1873–85. (December 2015). doi:10.1101/gr.192799.115. PMC 4665008. PMID 26560631. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4665008/. 
  144. ^ a b c d “Genome-scale analysis of metazoan replication origins reveals their organization in specific but flexible sites defined by conserved features”. Genome Research 21 (9): 1438–49. (September 2011). doi:10.1101/gr.121830.111. PMC 3166829. PMID 21750104. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3166829/. 
  145. ^ a b “Pre-replication complex proteins assemble at regions of low nucleosome occupancy within the Chinese hamster dihydrofolate reductase initiation zone”. Nucleic Acids Research 39 (8): 3141–55. (April 2011). doi:10.1093/nar/gkq1276. PMC 3082903. PMID 21148149. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3082903/. 
  146. ^ “Genome-wide localization of pre-RC sites and identification of replication origins in fission yeast”. The EMBO Journal 26 (5): 1327–39. (March 2007). doi:10.1038/sj.emboj.7601585. PMC 1817633. PMID 17304213. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1817633/. 
  147. ^ a b “Genome-wide depletion of replication initiation events in highly transcribed regions”. Genome Research 21 (11): 1822–32. (November 2011). doi:10.1101/gr.124644.111. PMC 3205567. PMID 21813623. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3205567/. 
  148. ^ “C. elegans”. eLife 5. (December 2016). doi:10.7554/eLife.21728. PMC 5222557. PMID 28009254. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5222557/. 
  149. ^ a b “The gastrula transition reorganizes replication-origin selection in Caenorhabditis elegans”. Nature Structural & Molecular Biology 24 (3): 290–299. (March 2017). doi:10.1038/nsmb.3363. PMID 28112731. 
  150. ^ a b “Unraveling cell type-specific and reprogrammable human replication origin signatures associated with G-quadruplex consensus motifs”. Nature Structural & Molecular Biology 19 (8): 837–44. (August 2012). doi:10.1038/nsmb.2339. PMID 22751019. 
  151. ^ “Initiation of DNA replication at CpG islands in mammalian chromosomes”. The EMBO Journal 17 (8): 2426–35. (April 1998). doi:10.1093/emboj/17.8.2426. PMC 1170585. PMID 9545253. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1170585/. 
  152. ^ “Transcription initiation activity sets replication origin efficiency in mammalian cells”. PLOS Genetics 5 (4): e1000446. (April 2009). doi:10.1371/journal.pgen.1000446. PMC 2661365. PMID 19360092. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2661365/. 
  153. ^ a b c “Dynamics of DNA replication in a eukaryotic cell”. Proceedings of the National Academy of Sciences of the United States of America 116 (11): 4973–4982. (March 2019). doi:10.1073/pnas.1818680116. PMC 6421431. PMID 30718387. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6421431/. 
  154. ^ “Drosophila ORC specifically binds to ACE3, an origin of DNA replication control element”. Genes & Development 13 (20): 2639–49. (October 1999). doi:10.1101/gad.13.20.2639. PMC 317108. PMID 10541550. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC317108/. 
  155. ^ “Role for a Drosophila Myb-containing protein complex in site-specific DNA replication”. Nature 420 (6917): 833–7. (2002). Bibcode2002Natur.420..833B. doi:10.1038/nature01228. PMID 12490953. 
  156. ^ “Dm-myb mutant lethality in Drosophila is dependent upon mip130: positive and negative regulation of DNA replication”. Genes & Development 18 (14): 1667–80. (July 2004). doi:10.1101/gad.1206604. PMC 478189. PMID 15256498. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC478189/. 
  157. ^ “Identification of a Drosophila Myb-E2F2/RBF transcriptional repressor complex”. Genes & Development 18 (23): 2929–40. (December 2004). doi:10.1101/gad.1255204. PMC 534653. PMID 15545624. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC534653/. 
  158. ^ “DNA replication control through interaction of E2F-RB and the origin recognition complex”. Nature Cell Biology 3 (3): 289–95. (March 2001). doi:10.1038/35060086. PMID 11231579. 
  159. ^ “The fission yeast homologue of Orc4p binds to replication origin DNA via multiple AT-hooks”. Proceedings of the National Academy of Sciences of the United States of America 96 (6): 2656–61. (March 1999). Bibcode1999PNAS...96.2656C. doi:10.1073/pnas.96.6.2656. PMC 15824. PMID 10077566. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC15824/. 
  160. ^ “Role of the Orc6 protein in origin recognition complex-dependent DNA binding and replication in Drosophila melanogaster”. Molecular and Cellular Biology 27 (8): 3143–53. (April 2007). doi:10.1128/MCB.02382-06. PMC 1899928. PMID 17283052. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1899928/. 
  161. ^ “The histone H4 Lys 20 methyltransferase PR-Set7 regulates replication origins in mammalian cells”. Nature Cell Biology 12 (11): 1086–93. (November 2010). doi:10.1038/ncb2113. PMID 20953199. 
  162. ^ “The role of PR-Set7 in replication licensing depends on Suv4-20h”. Genes & Development 26 (23): 2580–9. (December 2012). doi:10.1101/gad.195636.112. PMC 3521623. PMID 23152447. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3521623/. 
  163. ^ “Histone H4K20 tri-methylation at late-firing origins ensures timely heterochromatin replication”. The EMBO Journal 36 (18): 2726–2741. (September 2017). doi:10.15252/embj.201796541. PMC 5599798. PMID 28778956. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5599798/. 
  164. ^ “Histone H4K20 methylation mediated chromatin compaction threshold ensures genome integrity by limiting DNA replication licensing”. Nature Communications 9 (1): 3704. (September 2018). Bibcode2018NatCo...9.3704S. doi:10.1038/s41467-018-06066-8. PMC 6135857. PMID 30209253. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6135857/. 
  165. ^ “The BAH domain facilitates the ability of human Orc1 protein to activate replication origins in vivo”. The EMBO Journal 25 (22): 5372–82. (November 2006). doi:10.1038/sj.emboj.7601396. PMC 1636626. PMID 17066079. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1636626/. 
  166. ^ “Dynamic association of ORCA with prereplicative complex components regulates DNA replication initiation”. Molecular and Cellular Biology 32 (15): 3107–20. (August 2012). doi:10.1128/MCB.00362-12. PMC 3434513. PMID 22645314. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3434513/. 
  167. ^ “Temporal association of ORCA/LRWD1 to late-firing origins during G1 dictates heterochromatin replication and organization”. Nucleic Acids Research 45 (5): 2490–2502. (March 2017). doi:10.1093/nar/gkw1211. PMC 5389698. PMID 27924004. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5389698/. 
  168. ^ “Nucleosome-interacting proteins regulated by DNA and histone methylation”. Cell 143 (3): 470–84. (October 2010). doi:10.1016/j.cell.2010.10.012. PMC 3640253. PMID 21029866. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3640253/. 
  169. ^ “Quantitative interaction proteomics and genome-wide profiling of epigenetic histone marks and their readers”. Cell 142 (6): 967–80. (September 2010). doi:10.1016/j.cell.2010.08.020. PMID 20850016. 
  170. ^ “A human interactome in three quantitative dimensions organized by stoichiometries and abundances”. Cell 163 (3): 712–23. (October 2015). doi:10.1016/j.cell.2015.09.053. PMID 26496610. 
  171. ^ “Interaction between HMGA1a and the origin recognition complex creates site-specific replication origins”. Proceedings of the National Academy of Sciences of the United States of America 105 (5): 1692–7. (February 2008). Bibcode2008PNAS..105.1692T. doi:10.1073/pnas.0707260105. PMC 2234206. PMID 18234858. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2234206/. 
  172. ^ “A replicator-specific binding protein essential for site-specific initiation of DNA replication in mammalian cells”. Nature Communications 7: 11748. (June 2016). Bibcode2016NatCo...711748Z. doi:10.1038/ncomms11748. PMC 4899857. PMID 27272143. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4899857/. 
  173. ^ “Conformational control and DNA-binding mechanism of the metazoan origin recognition complex”. Proceedings of the National Academy of Sciences of the United States of America 115 (26): E5906–E5915. (June 2018). doi:10.1073/pnas.1806315115. PMC 6042147. PMID 29899147. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6042147/. 
  174. ^ “Single particle EM studies of the Drosophila melanogaster origin recognition complex and evidence for DNA wrapping”. Journal of Structural Biology 164 (3): 241–9. (December 2008). doi:10.1016/j.jsb.2008.08.006. PMC 2640233. PMID 18824234. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2640233/. 
  175. ^ “Architecture of the yeast origin recognition complex bound to origins of DNA replication”. Molecular and Cellular Biology 17 (12): 7159–68. (December 1997). doi:10.1128/mcb.17.12.7159. PMC 232573. PMID 9372948. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC232573/. 
  176. ^ “From structure to mechanism-understanding initiation of DNA replication”. Genes & Development 31 (11): 1073–1088. (June 2017). doi:10.1101/gad.298232.117. PMC 5538431. PMID 28717046. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5538431/. 
  177. ^ “Switch on the engine: how the eukaryotic replicative helicase MCM2-7 becomes activated”. Chromosoma 124 (1): 13–26. (March 2015). doi:10.1007/s00412-014-0489-2. hdl:10044/1/27085. PMID 25308420. 
  178. ^ “Diversity of eukaryotic DNA replication origins revealed by genome-wide analysis of chromatin structure”. PLOS Genetics 6 (9): e1001092. (September 2010). doi:10.1371/journal.pgen.1001092. PMC 2932696. PMID 20824081. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2932696/. 
  179. ^ “Conserved nucleosome positioning defines replication origins”. Genes & Development 24 (8): 748–53. (April 2010). doi:10.1101/gad.1913210. PMC 2854390. PMID 20351051. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2854390/. 
  180. ^ a b “Nucleosomes influence multiple steps during replication initiation”. eLife 6. (March 2017). doi:10.7554/eLife.22512. PMC 5400510. PMID 28322723. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5400510/. 
  181. ^ “HBO1 histone acetylase activity is essential for DNA replication licensing and inhibited by Geminin”. Molecular Cell 37 (1): 57–66. (January 2010). doi:10.1016/j.molcel.2009.12.012. PMC 2818871. PMID 20129055. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2818871/. 
  182. ^ “DNA sequence templates adjacent nucleosome and ORC sites at gene amplification origins in Drosophila”. Nucleic Acids Research 43 (18): 8746–61. (October 2015). doi:10.1093/nar/gkv766. PMC 4605296. PMID 26227968. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4605296/. 
  183. ^ “Replication Domains: Genome Compartmentalization into Functional Replication Units”. Advances in Experimental Medicine and Biology 1042: 229–257. (2017). doi:10.1007/978-981-10-6955-0_11. ISBN 978-981-10-6954-3. PMID 29357061. 
  184. ^ “Molecular Mechanism for Chromatin Regulation During MCM Loading in Mammalian Cells”. Advances in Experimental Medicine and Biology 1042: 61–78. (2017). doi:10.1007/978-981-10-6955-0_3. ISBN 978-981-10-6954-3. PMID 29357053. 
  185. ^ “Chromatin and DNA replication”. Cold Spring Harbor Perspectives in Biology 5 (8): a010207. (August 2013). doi:10.1101/cshperspect.a010207. PMC 3721285. PMID 23751185. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3721285/. 
  186. ^ “Identifying cis Elements for Spatiotemporal Control of Mammalian DNA Replication”. Cell 176 (4): 816–830.e18. (February 2019). doi:10.1016/j.cell.2018.11.036. PMC 6546437. PMID 30595451. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6546437/. 
  187. ^ “Genome-wide studies highlight indirect links between human replication origins and gene regulation”. Proceedings of the National Academy of Sciences of the United States of America 105 (41): 15837–42. (October 2008). Bibcode2008PNAS..10515837C. doi:10.1073/pnas.0805208105. PMC 2572913. PMID 18838675. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2572913/. 
  188. ^ “Highly transcribed RNA polymerase II genes are impediments to replication fork progression in Saccharomyces cerevisiae”. Molecular Cell 34 (6): 722–34. (June 2009). doi:10.1016/j.molcel.2009.05.022. PMC 2728070. PMID 19560424. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2728070/. 
  189. ^ “Post-licensing Specification of Eukaryotic Replication Origins by Facilitated Mcm2-7 Sliding along DNA”. Molecular Cell 60 (5): 797–807. (December 2015). doi:10.1016/j.molcel.2015.10.022. PMC 4680849. PMID 26656162. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4680849/. 
  190. ^ “Cell-type-specific replication initiation programs set fragility of the FRA3B fragile site”. Nature 470 (7332): 120–3. (February 2011). Bibcode2011Natur.470..120L. doi:10.1038/nature09745. PMID 21258320. 
  191. ^ a b “Distinct epigenetic features of differentiation-regulated replication origins”. Epigenetics & Chromatin 9: 18. (2016). doi:10.1186/s13072-016-0067-3. PMC 4862150. PMID 27168766. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4862150/. 
  192. ^ “Developmental control of gene copy number by repression of replication initiation and fork progression”. Genome Research 22 (1): 64–75. (January 2012). doi:10.1101/gr.126003.111. PMC 3246207. PMID 22090375. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3246207/. 
  193. ^ “High-resolution profiling of Drosophila replication start sites reveals a DNA shape and chromatin signature of metazoan origins”. Cell Reports 11 (5): 821–34. (May 2015). doi:10.1016/j.celrep.2015.03.070. PMC 4562395. PMID 25921534. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4562395/. 
  194. ^ “Cell cycle control of chorion gene amplification”. Genes & Development 12 (5): 734–44. (March 1998). doi:10.1101/gad.12.5.734. PMC 316579. PMID 9499407. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC316579/. 
  195. ^ “Recombination and recombination-dependent DNA replication in bacteriophage T4”. Annual Review of Genetics 32: 379–413. (1998). doi:10.1146/annurev.genet.32.1.379. PMID 9928485. 
  196. ^ “Non-Canonical Replication Initiation: You're Fired!”. Genes 8 (2): 54. (January 2017). doi:10.3390/genes8020054. PMC 5333043. PMID 28134821. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5333043/. 
  197. ^ “Homologous recombination-dependent initiation of DNA replication from DNA damage-inducible origins in Escherichia coli”. The EMBO Journal 12 (8): 3287–95. (August 1993). doi:10.1002/j.1460-2075.1993.tb05998.x. PMC 413596. PMID 8344265. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC413596/. 
  198. ^ “Break-induced replication and telomerase-independent telomere maintenance require Pol32”. Nature 448 (7155): 820–3. (August 2007). Bibcode2007Natur.448..820L. doi:10.1038/nature06047. PMID 17671506. 
  199. ^ “Multiple mechanisms for initiation of ColE1 DNA replication: DNA synthesis in the presence and absence of ribonuclease H”. Cell 51 (6): 1113–22. (December 1987). doi:10.1016/0092-8674(87)90597-6. PMID 2446774. 
  200. ^ “Role for RNA:DNA hybrids in origin-independent replication priming in a eukaryotic system”. Proceedings of the National Academy of Sciences of the United States of America 112 (18): 5779–84. (May 2015). Bibcode2015PNAS..112.5779S. doi:10.1073/pnas.1501769112. PMC 4426422. PMID 25902524. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4426422/. 
  201. ^ “The eukaryotic tree of life from a global phylogenomic perspective”. Cold Spring Harbor Perspectives in Biology 6 (5): a016147. (May 2014). doi:10.1101/cshperspect.a016147. PMC 3996474. PMID 24789819. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3996474/. 
  202. ^ “Developmental regulation of the Tetrahymena thermophila origin recognition complex”. PLOS Genetics 11 (1): e1004875. (January 2015). doi:10.1371/journal.pgen.1004875. PMC 4287346. PMID 25569357. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4287346/. 
  203. ^ “Tetrahymena ORC contains a ribosomal RNA fragment that participates in rDNA origin recognition”. The EMBO Journal 26 (24): 5048–60. (December 2007). doi:10.1038/sj.emboj.7601919. PMC 2140106. PMID 18007594. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2140106/. 
  204. ^ “Differential targeting of Tetrahymena ORC to ribosomal DNA and non-rDNA replication origins”. The EMBO Journal 28 (3): 223–33. (February 2009). doi:10.1038/emboj.2008.282. PMC 2637336. PMID 19153611. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2637336/. 
  205. ^ “Conservation and Variation in Strategies for DNA Replication of Kinetoplastid Nuclear Genomes”. Current Genomics 19 (2): 98–109. (February 2018). doi:10.2174/1389202918666170815144627. PMC 5814967. PMID 29491738. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5814967/. 
  206. ^ “Diverged composition and regulation of the Trypanosoma brucei origin recognition complex that mediates DNA replication initiation”. Nucleic Acids Research 44 (10): 4763–84. (June 2016). doi:10.1093/nar/gkw147. PMC 4889932. PMID 26951375. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4889932/. 
  207. ^ “Identification of ORC1/CDC6-interacting factors in Trypanosoma brucei reveals critical features of origin recognition complex architecture”. PLOS ONE 7 (3): e32674. (2012). Bibcode2012PLoSO...732674T. doi:10.1371/journal.pone.0032674. PMC 3297607. PMID 22412905. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3297607/. 
  208. ^ “Genome-wide mapping reveals single-origin chromosome replication in Leishmania, a eukaryotic microbe”. Genome Biology 16: 230. (October 2015). doi:10.1186/s13059-015-0788-9. PMC 4612428. PMID 26481451. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4612428/. 






複製起点と同じ種類の言葉

このページでは「ウィキペディア」から複製起点を検索した結果を表示しています。
Weblioに収録されているすべての辞書から複製起点を検索する場合は、下記のリンクをクリックしてください。
 全ての辞書から複製起点を検索

英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  
  •  複製起点のページへのリンク

辞書ショートカット

すべての辞書の索引

「複製起点」の関連用語

複製起点のお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



複製起点のページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアの複製起点 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。

©2024 GRAS Group, Inc.RSS