岩澤理論とは? わかりやすく解説

Weblio 辞書 > 辞書・百科事典 > 百科事典 > 岩澤理論の意味・解説 

岩澤理論

(岩澤の類数公式 から転送)

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2024/03/28 10:26 UTC 版)

数論における岩澤理論(いわさわりろん、: Iwasawa theory)は、岩澤健吉円分体の理論の一部として提唱し、バリー・メイザーやラルフ・グリーンバーグ、クリストファー・スキナーらによって洗練・確立された、(無限次元拡大の)ガロア群イデアル類群における表現論である。

Zp 拡大

編:ヤコビ多様体との類似が出発点でないとすると pn 分体を全ての n について考察すると良いと云う事実にはどの様にして気付かれたのでしょうか.

岩澤:それはこういう事(円分体論)をちょっとやってみれば, 誰でも自然に考える事だと思います.(注:そうですか?)

—岩澤健吉(岩澤健吉先生のお話しを伺った120分, p. 370 より)

...岩沢理論の雰囲気は(私には)’滝の上には虹がかかる’といったものだと感じられます.(滝 ↔ Zp 拡大)
伊原康隆「‘フェルマ,ニュートン,ワイルス’」『数学』第45巻第4号、1993年、375頁、doi:10.11429/sugaku1947.45.372 
Zp 拡大の図

岩澤理論では、有限次代数体Zp 拡大Zp-extension)というものを考える。素数 p と有限次代数体 F に対して、体の拡大 F/FZp 拡大であるとは、これがガロア拡大であって、そのガロア群 Gal(F/F)p 進整数環 Zp加法群位相群として同型であることをいう[1]Zp 拡大のガロア群は Γ ≔ Gal(F/F) と書かれ、アーベル群ではあるが乗法的に記される。n を非負整数としたとき、Zp には pn の倍数たちからなる有限指数の開部分群があるので、Γ にもそのような部分群がある。これは ΓZp の同型の取り方によらない。この部分群を Γn と書く[注釈 1]Γn にガロア対応する F部分体Fn と書き、Zp 拡大 F/Fnn-th layer)という[2]。これは F/F中間体で、Fpn 次である唯一のものであり[1]F 上の巡回拡大である[3]Fn たちは体の塔(拡大列)




英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「岩澤理論」の関連用語






6
30% |||||





岩澤理論のお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



岩澤理論のページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアの岩澤理論 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。

©2025 GRAS Group, Inc.RSS