区分的
(区分的に定義された写像 から転送)
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2021/12/09 09:36 UTC 版)
ナビゲーションに移動 検索に移動![]() | この記事は検証可能な参考文献や出典が全く示されていないか、不十分です。2009年12月) ( |
数学における区分定義写像(くぶんていぎしゃぞう、英: piecewise-defined function; 区分的に定義された函数)あるいは区分(ごとの)写像 (piecewise function) は、独立変数の値によってその写像を定義する「対応規則」が変化するような写像である。つまり区分定義写像は、その定義域の分割の各小片(定義域片)上で定義された複数の写像の寄せ集めとして定義される。
区分ごとに考えるというのは写像そのものの性質ではなく実際には表示法を言っているのであるが、適当な仮定を追加して写像の性質を記述することに利用できる。たとえば、「区分的に微分可能」や「区分的に連続的微分可能」な函数は、定義域片上ではいずれも微分可能だが、全体としては(つまり定義域片の「境界」で)微分可能でないことが起こり得る。凸解析では、そのような点をも含むように微分係数の概念を一般化するために、区分定義函数の劣微分が考えられる。
定義
集合 A から B への写像 f: A → B が区分的に定義されているとは、定義域 A の分割
区分的に定義された写像は、定義域片とその上で定義された写像片の集まりとして全体を構成すること以外は、通常の写像の記法に則って記述することができる。著しいのは実用上の大半においてそうであるように、定義域が「有限個」の「区間」に分割される場合を指して「区分的」と言う場合である。例えば、絶対値函数の区分的な定義
区分定義函数が与えられた区間において連続であるとは、以下の条件を満たすことを言う。
- 函数はその区間全体で定義されている
- 函数を定義する函数片がその区間において連続
- その区間に含まれる定義域片のどの端点も函数の不連続点でない
例えば図の函数はふたつの定義域片の何れでも連続となる区分連続な函数だが、x0 で跳躍不連続ゆえ、定義域全体では連続でない。