劣微分とは? わかりやすく解説

Weblio 辞書 > 辞書・百科事典 > 百科事典 > 劣微分の意味・解説 

劣微分

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2022/08/21 19:57 UTC 版)

凸関数(青)と、 点 (x0, f(x0)) での劣微分の値(劣勾配)に対応する「接線」の集合(赤)

数学において劣微分(れつびぶん、: subderivative, subdifferential)とは一般の微分の概念を微分不可能な関数に対して拡張した考え方である。一般の関数の微分は関数であるが、劣微分の値は集合となる。劣微分は凸解析の分野で広く用いられており、凸最適化と深い関係を持つ。

ある開区間 I 上の必ずしも全ての点で微分可能でない凸関数 f: IR を考える。例えば絶対値を返す関数 f(x) = |x| などは x = 0 では微分不可能である。しかしながら右の図に示す通り、微分不可能な点を通り、その近傍の点とは接するか、あるいは下を通るような直線の集合を考えることができる.この直線それぞれの傾きの集合が劣微分の値となる.もし関数が下に凸ではなく上に凸である場合にも劣微分の定義は適用可能であるが、それはあまり重要な意味を持たないため、多くの場合、凸関数に対してのみ劣微分が定義される.

定義

凸関数 f: IR の点 x0 における劣微分は次の条件を満たす数 c の集合である。

この項目は、解析学に関連した書きかけの項目です。この項目を加筆・訂正などしてくださる協力者を求めていますプロジェクト:数学Portal:数学)。




英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「劣微分」の関連用語


2
10% |||||

3
10% |||||


5
4% |||||

劣微分のお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



劣微分のページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアの劣微分 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。

©2025 GRAS Group, Inc.RSS