ここに Ω は Rn 内の有界なリプシッツ領域である。この問題に対応する弱形式は、次を満たす u をソボレフ空間 H01(Ω) 内で見つけることである。
ここに
である。ラックス=ミルグラムの補題によると、双線型形式 B が H01(Ω) 上のノルムに関して連続かつ楕円型であるなら、各 f ∈ L2(Ω) に対して唯一つの解 u が H01(Ω) 内に必ず存在することが分かる。ゴルディングの不等式の仮定は、ラプラス作用素に対して成立することは容易に分かるので、次を満たす定数 C と G ≥ 0 が存在する:
ポアンカレ不等式を適用することで、この右辺の二つの項は組み合わされ、新たな定数 K > 0 によって次のように書き換えることが出来る:
これはまさしく B が楕円型であることを意味する。B の連続性はさらに容易に確かめられる。すなわち、コーシー=シュワルツの不等式と、ソボレフノルムは勾配の L2 ノルムによって統制される事実をシンプルに適用すればよい。
参考文献
Renardy, Michael and Rogers, Robert C. (2004). An introduction to partial differential equations. Texts in Applied Mathematics 13 (Second edition ed.). New York: Springer-Verlag. p. 356. ISBN0-387-00444-0 (Theorem 9.17)
All text is available under the terms of the GNU Free Documentation License. この記事は、ウィキペディアのゴルディングの不等式 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。
Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。