リプシッツ領域とは? わかりやすく解説

Weblio 辞書 > 辞書・百科事典 > 百科事典 > リプシッツ領域の意味・解説 

リプシッツ領域

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2023/03/26 00:38 UTC 版)

数学においてリプシッツ領域(リプシッツりょういき、: Lipschitz domain)あるいはリプシッツ境界を持つ領域とは、局所的にはリプシッツ連続な函数のグラフと見なすことが出来る意味で「十分に正則」な境界を持つユークリッド空間内のある領域のことを言う。

ドイツ数学者であるルドルフ・リプシッツの名にちなむ。

定義

n ∈ N に対し、Ω を Rn開部分集合とする。Ω の境界は ∂Ω と表す。このとき Ω がリプシッツ境界を持つリプシッツ領域であるとは、すべての点 p ∈ ∂Ω に対して、ある半径 r > 0 と写像 hp : Br(p) → Q が存在して、次が成立することを言う。

  • hp全単射である;
  • hphp−1 はいずれもリプシッツ連続である;
  • hp(∂Ω ∩ Br(p)) = Q0;
  • hp(Ω ∩ Br(p)) = Q+;

ここに

p を中心とする半径 rn-次元開球を表し、Q は単位球 B1(0) を表す。また

である。

リプシッツ領域の応用

ソボレフの埋め込み定理の多くは、考えている領域がリプシッツ領域であることを必要とする。結果として、多くの偏微分方程式変分問題はリプシッツ領域上で定義される。

参考文献

  • Dacorogna, B. (2004). Introduction to the Calculus of Variations. Imperial College Press, London. ISBN 1-86094-508-2 



英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「リプシッツ領域」の関連用語

リプシッツ領域のお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



リプシッツ領域のページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアのリプシッツ領域 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。

©2025 GRAS Group, Inc.RSS