勾配 (ベクトル解析) 更なる性質と応用

勾配 (ベクトル解析)

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2023/01/26 15:06 UTC 版)

更なる性質と応用

等位集合

f が可微分であるとき、点 x における勾配とベクトル v とのドット積 (∇f)xvx における fv 方向への方向微分を与える。従ってこの場合、f の勾配は f のすべての等位集合直交する。例えば、三次元空間における等位面は F(x, y, z) = c なる形の方程式で定義され、そして F の勾配はこの面の法線族となる。

より一般に、リーマン多様体に埋め込まれた任意の超曲面F(P) = 0(ただし dF は至る所零でない)の形の方程式に表すことができて、F の勾配はこの超曲面の法線族になる。

一点 P において関数 f を考えるとき、この点 P を通る曲面を描き、この曲面上の各点で関数が同じ値を取るものとすれば、この曲面は「等位面」と呼ばれる。

保存ベクトル場と勾配定理

関数の勾配を勾配場と呼ぶ。連続勾配場は常に保存場で、任意の積分路に沿った線積分は積分路の端点にのみ依存して決まり、その値は勾配定理(線積分に対する微分積分学の基本定理)で求められる。逆に連続保存ベクトル場は必ずある関数の勾配場として得られる。

リーマン多様体

リーマン多様体 (M, g) 上の任意の滑らかな関数 f に対し、f の勾配 f とは、任意のベクトル場 X について

を満たすベクトル場を言う。ただし gx( , )計量 g の定める x における接ベクトルの内積で、XfX(f) とも書く)は各点 xM において X 方向への f方向微分x における値をとる関数である。言い換えれば、座標チャート φ において M の開集合から Rn の開集合への写像 (∂Xf)(x)

で与えられる。ここに Xj は、この座標チャートにおける X の第 j 成分を表す。

故にこの勾配の局所形は

となる。M = Rn の場合を一般化して、関数の勾配と外微分とを

によって関係づけることができる。より細かく言えば、勾配ベクトル場 f は微分一次形式 dfg の定める上げ同型英語版(シャープ)

を用いて対応付けられる。Rn 上の関数の勾配と外微分との間の関係は、この計量がドット積の与える平坦計量である特別の場合である。

円筒座標系および球面座標系での表示

円筒座標系において勾配は

で与えられる(Schey 1992, pp. 139–142)。ここで ϕ は方位角、z は軸方向の座標および eρ, eφ, ez は各座標軸方向に沿った単位ベクトルである。

球座標系においては

となる(Schey 1992, pp. 139–142)。ここに ϕ方位角θ は天頂角である。








勾配 (ベクトル解析)と同じ種類の言葉


英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「勾配 (ベクトル解析)」の関連用語

勾配 (ベクトル解析)のお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



勾配 (ベクトル解析)のページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアの勾配 (ベクトル解析) (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。

©2024 GRAS Group, Inc.RSS