勾配 (ベクトル解析) 勾配と全微分の関係

勾配 (ベクトル解析)

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2023/01/26 15:06 UTC 版)

勾配と全微分の関係

写像の線型近似

ユークリッド空間 Rn から R への関数 f の、任意の点 x0Rn における勾配は、x0 における f の最適線型近似を特徴づけるものである。即ち、線型近似式は x0 にほど近い x に対して

で与えられる。ここで (∇ f )x0x0 における f の勾配であり、中黒は Rn におけるドット積である。この式は fx0 における多変数テイラー級数展開の最初の 2 項をとったものと同値である。

全微分

関数 f: RnR の点 xRn における最適線型近似は、Rn から R への線型汎関数であり、x における f微分係数あるいは全微分係数 dfx, Df(x) と呼ばれる。従って勾配は全微分係数との間に

なる関係で結ばれている。xdfx へ写す関数 dff の全微分または全導関数と呼ばれ、これを一次微分形式と解釈して f の外微分と見做すこともできる。

Rn を(長さ n で成分が実数値の)列ベクトル全体の成す空間と見るとき、全微分 df を行ベクトル

と見做して、dfx(v) を行列の積で与えることができる。このとき、勾配は列ベクトル

に対応する。

微分としての性質

URn開集合とし、関数 f : URフレシェ微分可能とすると、f の全微分は f のフレシェ導関数であり、従って fU から空間 R への写像で

を満たすものである(中黒はドット積)。

この帰結として、勾配が通常の微分が持つ微分法則を満足することがわかる。

線型性
二つの実数値関数 f, g が点 aRn において微分可能で、α, β が実定数であるとき、線型結合 αf + βga において微分可能であり、さらに ∇(αf + βg)(a) = αf(a) + βg(a) を満たすという意味で、勾配は線型である。
積の微分法則
fg が実数値関数で点 aRn において微分可能ならば、それらの積 (fg)(x) = f(x)g(x)a において微分可能で、∇(fg)(a) = f(a)∇g(a) + g(a)∇f(a) なる積の法則を満たす。
連鎖律
Rn の部分集合 A 上で定義された実数値関数 f : AR が点 a において微分可能とする。勾配に関する連鎖律には 2 つの形が存在する。
1 つ目は、関数 g を曲線の媒介変数表示、即ち R の部分集合 I から Rn への関数 g : IRn とするとき、gg(c) = a なる I の点 c で微分可能ならば、(fg)'(c) = ∇f(a) · g'(c) が成立するというもの。ただし 写像の合成である。より一般に、IRk である場合にも ∇(fg)(c) = t(Dg(c))(∇f(a)) が成立する。ただし t(Dg) は転置関数行列である。
二つ目の連鎖律は、R の部分集合 I 上の実数値関数 h: IRf(a) ∈ I なる点において微分可能ならば ∇(hf)(a) = h'(f(a))∇f(a) というものである。







勾配 (ベクトル解析)と同じ種類の言葉


英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「勾配 (ベクトル解析)」の関連用語

勾配 (ベクトル解析)のお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



勾配 (ベクトル解析)のページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアの勾配 (ベクトル解析) (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。

©2024 GRAS Group, Inc.RSS