明示公式 リーマンの明示公式

明示公式

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2024/02/07 08:40 UTC 版)

リーマンの明示公式

リーマンは1859年の論文 「与えられた数より小さい素数の個数について (Ueber die Anzahl der Primzahlen unter einer gegebenen Grösse)」で、

により、素数数え上げ函数英語版(prime-counting function) π0(x) を発見した。この函数は、正規化された素数数え上げ函数 π(x) へ関係付けられている。この公式は、関係する函数

の項で与えられた。(リーマンはこのようにと書き表したが、現在ではといえば関数一般のことを指すため、と書くことが慣例となっている。)この函数がどのように素数の数を数えるかというと、素数 p の 1/n となるように、素数のべき pn を数え、不連続点で左からの極限と右からの極限の数論的意味を持つものとして(2つの平均をとることで)、数え上げられる。正規化された素数数え上げ函数は、この函数より

として得られる。リーマンの公式は

となり、リーマンゼータ函数が非自明な零点を渡る和を意味する。この和は絶対収束しないが、零点の虚数部の絶対値のオーダーを取ることで、零点を評価できる。最初の項の中の函数 li は、発散積分

コーシーの主値により与えられる対数積分である。ゼータ函数の零点を意味する項 li(xρ) は、li が 0 と 1 で分岐点を持ち、複素変数 ρ が x > 1 で Re(ρ) > 0 の領域内へ解析接続されることへ注意を払う必要がある。他の項も零点に対応し、主要項 li(x) は s = 1 での極から来ていて、多重度 −1 の零点と考えられる。また残る小さな項は自明な零点から来る。この公式は、リーマンゼータ函数の零点が「期待」された点の周囲での素数の振動を制御していることを意味する。(この級数の最初のいくつかの項のグラフは、Zagier 1977を参照)

リーマンの素数の数え上げ函数 π にかえて、チェビシェフ函数 の正規化 を使うと、リーマンの公式のより単純な形への変形でき、[1] フォン・マンゴルト(von-Mangoldt)の明示公式

を得る。ここに非整数 x に対し、ψ(x) は x よりも小さい全ての素数べき pn を渡る log(p) の和である。これはリーマン明示公式のフォン・マンゴルトによる証明で重要な役割を果たす。

ここで零点を渡る和は、再び、虚数部の増加するオーダーの中でとる必要がある。[2]

ここに、

である。

和を消去することを意味する S(x,T) のエラー項は、オーダーが[2]

である。


  1. ^ Weisstein, Eric W. Explicit Formula on MathWorld.
  2. ^ a b Ingham (1990) p.77





英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「明示公式」の関連用語

明示公式のお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



明示公式のページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアの明示公式 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。

©2024 GRAS Group, Inc.RSS