広域X線吸収微細構造 広域X線吸収微細構造の概要

広域X線吸収微細構造

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2021/01/10 05:06 UTC 版)

ナビゲーションに移動 検索に移動
エックス線吸収スペクトルの例。横軸はエックス線のエネルギー(吸収端をゼロとする)、縦軸はエックス線の吸収量である。

XANESよりも高いエネルギー領域では、励起された内殻電子がX線吸収原子から放出される(光電子)。放出された光電子は隣接する原子により散乱され(→散乱理論)、光電子とその散乱波との干渉により、内殻電子の励起確率、すなわちX線吸収係数が変化する。EXAFS領域における振動構造はこの効果による。

EXAFS基本公式

一回散乱(隣接する1つの原子による散乱)のEXAFSの基本公式を以下に示す。

ここではEXAFS振動関数、は吸収係数、は孤立原子の吸収係数は多体効果を表す因子、は後方散乱因子、配位数は波数、は配位距離、位相シフトデバイ‐ワラー因子である。

この公式は以下のような仮定により導かれる[1]

  • 一光子吸収近似。つまり光のベクトルポテンシャルは小さいとしてAの一次のみ考慮する。
  • 電気双極子近似。つまり内殻電子の広がりは入射光の波長より十分に短い。
  • 一電子散乱近似。つまり電子の原子散乱は、他の電子に関係なく独立して行われる。
  • 励起電子のエネルギーは十分に高い。
  • マフィンティンポテンシャルによって電子は散乱される。
  • 平面波近似。つまり散乱原子のポテンシャル領域が、最近接原子間距離に対して十分に小さい時、散乱は平面波によって行われる。

EXAFSの解析

EXAFS を解析することでX線吸収原子に隣接する原子の位置などの情報が得られる。このことはラルフ・クローニッヒによって発見されたため、EXAFS の構造はかつてはクローニッヒ構造 ("Kronig structure") と呼ばれた。

実験で得られたはさまざまなシェルの寄与を含んでいるため、まずk空間からR空間フーリエ変換し動径構造関数を得る。そして必要な範囲のみを逆フーリエ変換することで得られたから目的とするシェルの構造パラメータを求める。フィッティングには後方散乱因子と位相シフトの理論値が必要となる。それぞれの値は、歴史的にはTeoとLeeが平面波近似によって、McKaleが部分的な球面波近似によって求めている。しかし、XAFSの国際会議「IXSレポート」では球面波を用いたFEFFによる理論値を推奨している。




  1. ^ 石井忠男『EXAFSの基礎―広域X線吸収微細構造』1994年、裳華房[要ページ番号]


「広域X線吸収微細構造」の続きの解説一覧



英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「広域X線吸収微細構造」の関連用語

広域X線吸収微細構造のお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



広域X線吸収微細構造のページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアの広域X線吸収微細構造 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。

©2024 GRAS Group, Inc.RSS