メモリーB細胞 メモリーB細胞の概要

メモリーB細胞

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2022/08/19 22:02 UTC 版)

B細胞は、ウイルスなどの侵入する病原体に対する抗体を作る免疫系の細胞である。それらは、将来の感染でより迅速に抗体を作ることができるように、同じ病原体を記憶している記憶細胞を形成する。

一次応答

T細胞依存性の発生経路において、ナイーブ濾胞B細胞英語版(ろほうびーさいぼう)は、最初の感染、すなわち一次免疫応答中に抗原提示TFH英語版細胞によって活性化される[2]。活性化後、B細胞は二次リンパ系器官(すなわち脾臓およびリンパ節)に移動する。二次リンパ系器官内では、B細胞の大部分がB細胞濾胞に入り、そこで胚中心が形成される。ほとんどのB細胞は、最終的に胚中心内で形質細胞またはメモリーB細胞に分化する[3]

胚中心内に入ると、B細胞は増殖し、続いて表面受容体の遺伝子コーディング領域の突然変異が起こる。これは、体細胞超変異として知られているプロセスである[2]。変異は、特定の抗原に対する表面受容体の親和性を増加または減少させ、これは親和性成熟と呼ばれる進行である。これらの変異を獲得した後、B細胞の表面にある受容体(B細胞受容体)は、胚中心内で現在の抗原に対する親和性をテストされる[4]。表面受容体の親和性を高めた変異を持つB細胞クローンは、同族のTFH細胞との相互作用を介して生存シグナルを受け取る[1][5]。これらの生存シグナルを受け取るのに十分に高い親和性を持たないB細胞、および潜在的に自己反応性を持つB細胞は、アポトーシスによって死滅する[3]。体細胞突然変異に加えて、多くのB細胞は、分化前にクラススイッチも受け、これにより、将来の免疫応答でさまざまな種類の抗体を分泌することができる。

多くのB細胞は、エフェクターB細胞とも呼ばれる形質細胞に分化し、防御抗体の第一波を産生し、感染症の治癒を助ける[3][1]。B細胞の一部は、体内で長期的生存するメモリーB細胞に分化する[6]。 分化後、メモリーB細胞は、将来の曝露の際に抗原に遭遇しやすい体の周辺部に移動する[3][1][2]。循環するB細胞の多くは、パイエル板のような、抗原と接触する可能性の高い部位に集中するようになる。

メモリーB細胞への分化のメカニズムについて、抗原に対する親和性が比較的低いB細胞はメモリーB細胞となり、親和性が比較的高いB細胞は形質細胞になるという仮説があったが、2016年にIFReCの新中須亮助教、黒崎知博教授らの研究グループの研究で、親和性が低い胚中心B細胞が、メモリーB細胞に分化誘導されやすいという仮説を裏付け従来の概念を覆す研究結果が示された。なぜ親和性が低いB細胞が分化されやすいか、それは親和性が高いと特定の抗原に特化し強く反応するよりも、親和性が低い方が多少変異を起こした抗原へもある程度反応し対応できるからだと考えられる[7][8]

また、一部の研究者は、メモリーB細胞への分化はランダムに起こるという仮説を提唱している[9]が、完全なランダムではなく、胚中心細胞から記憶細胞への分化のメカニズムとして、代謝活性の低くB細胞受容体からの生存シグナルを多く獲得した胚中心B細胞が記憶B細胞に効率的に分化しやすいことが分かった[10][11]

また、転写因子NF-κBサイトカインIL-24がメモリーB細胞への分化に関与しているという仮説もされている[12]が、転写因子Bach2遺伝子が胚中心 B 細胞の代謝制御に重要である事がわかった[10][11]

しかし、胚中心内でメモリーB細胞に分化する過程はまだ完全には解明されていない[2]

二次応答と記憶

一次免疫応答中に産生されるメモリーB細胞は、最初の曝露中に関与する抗原に特異的である。二次応答では、その抗原または類似の抗原に特異的なメモリーB細胞が応答する[2]。メモリーB細胞が特定の抗原に再遭遇すると、それらは増殖して形質細胞に分化し、形質細胞は抗原に反応して除去する。この時点で形質細胞に分化しなかったメモリーB細胞は、胚中心に再び侵入して、さらなる親和性成熟を起こすためのクラススイッチまたは体細胞突然変異を受けることができる。メモリーB細胞の形質細胞への分化は、ナイーブB細胞による分化よりもはるかに速く、メモリ-B細胞は、より効率的な二次免疫応答を生み出すことができる[9]。このメモリーB細胞応答の効率化と蓄積は、ワクチンおよびブースターショット(二度目のワクチン)の基盤となる。


  1. ^ a b c d e Weisel, Florian; Shlomchik, Mark (2017-04-26). “Memory B Cells of Mice and Humans”. Annual Review of Immunology 35 (1): 255–284. doi:10.1146/annurev-immunol-041015-055531. ISSN 0732-0582. PMID 28142324. 
  2. ^ a b c d e f g h i j Seifert, M; Küppers, R (2016-08-08). “Human memory B cells”. Leukemia 30 (12): 2283–2292. doi:10.1038/leu.2016.226. ISSN 0887-6924. PMID 27499139. 
  3. ^ a b c d e f Suan, Dan; Sundling, Christopher; Brink, Robert (2017-04-01). “Plasma cell and memory B cell differentiation from the germinal center” (英語). Current Opinion in Immunology 45: 97–102. doi:10.1016/j.coi.2017.03.006. ISSN 0952-7915. PMID 28319733. 
  4. ^ Allman, David; Wilmore, Joel R.; Gaudette, Brian T. (March 2019). “The continuing story of T‐cell independent antibodies”. Immunological Reviews 288 (1): 128–135. doi:10.1111/imr.12754. ISSN 0105-2896. PMC 6653682. PMID 30874357. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6653682/. 
  5. ^ Victora, Gabriel D.; Nussenzweig, Michel C. (2012-03-26). “Germinal Centers”. Annual Review of Immunology 30 (1): 429–457. doi:10.1146/annurev-immunol-020711-075032. ISSN 0732-0582. PMID 22224772. 
  6. ^ Gatto, Dominique; Brink, Robert (2010-11-01). “The germinal center reaction” (英語). Journal of Allergy and Clinical Immunology 126 (5): 898–907. doi:10.1016/j.jaci.2010.09.007. ISSN 0091-6749. PMID 21050940. 
  7. ^ Ryo Shinnakasu、Takeshi Inoue、Kohei Kometani、Saya Moriyama、Yu Adachi、Manabu Nakayama、Yoshimasa Takahashi、Hidehiro Fukuyama ほか「Regulated selection of germinal-center cells into the memory B cell compartment」『Nature Immunology』第17巻、2016年、 861?869、 doi:10.1038/ni.3460
  8. ^ メモリーB細胞の分化誘導メカニズムを解明(黒崎グループがNat Immunolに発表)解説”. 大阪大学免疫学フロンティア研究センター (WPI-IFReC). 2021年9月4日閲覧。
  9. ^ a b c d e f g h Kurosaki, Tomohiro; Kometani, Kohei; Ise, Wataru (March 2015). “Memory B cells” (英語). Nature Reviews Immunology 15 (3): 149–159. doi:10.1038/nri3802. ISSN 1474-1733. PMID 25677494. 
  10. ^ a b Takeshi Inoue、Ryo Shinnakasu、Chie Kawai、Wataru Ise、Eiryo Kawakami、Nicolas Sax、Toshihiko Oki、Toshio Kitamura ほか「Exit from germinal center to become quiescent memory B cells depends on metabolic reprograming and provision of a survival signal」『Journal of Experimental Medicine (JEM)』第218巻第1号、2021年、 doi:10.1084/jem.20200866
  11. ^ a b 免疫記憶成立のメカニズムを解明 (井上&黒崎G が JEMに発表) 解説”. 大阪大学免疫学フロンティア研究センター (WPI-IFReC). 2021年9月4日閲覧。
  12. ^ a b Shinnakasu, Ryo; Kurosaki, Tomohiro (2017-04-01). “Regulation of memory B and plasma cell differentiation” (英語). Current Opinion in Immunology 45: 126?131. doi:10.1016/j.coi.2017.03.003. ISSN 0952-7915. PMID 28359033. 
  13. ^ Pupovac, Aleta; Good-Jacobson, Kim L (2017-04-01). “An antigen to remember: regulation of B cell memory in health and disease” (英語). Current Opinion in Immunology 45: 89–96. doi:10.1016/j.coi.2017.03.004. ISSN 0952-7915. PMC 7126224. PMID 28319732. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7126224/. 
  14. ^ Montecino-Rodriguez, Encarnacion; Dorshkind, Kenneth (2012-01-27). “B-1 B Cell Development in the Fetus and Adult” (英語). Immunity 36 (1): 13–21. doi:10.1016/j.immuni.2011.11.017. ISSN 1074-7613. PMC 3269035. PMID 22284417. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3269035/. 
  15. ^ Knox, James J.; Myles, Arpita; Cancro, Michael P. (March 2019). “T‐bet + memory B cells: Generation, function, and fate” (英語). Immunological Reviews 288 (1): 149–160. doi:10.1111/imr.12736. ISSN 0105-2896. PMC 6626622. PMID 30874358. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6626622/. 


「メモリーB細胞」の続きの解説一覧



英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  
  •  メモリーB細胞のページへのリンク

辞書ショートカット

すべての辞書の索引

「メモリーB細胞」の関連用語

メモリーB細胞のお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



メモリーB細胞のページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアのメモリーB細胞 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。

©2024 GRAS Group, Inc.RSS