フェルミエネルギー バンド構造

フェルミエネルギー

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2024/04/28 18:38 UTC 版)

バンド構造

熱力学的平衡状態にある様々な材料における電子状態の占有率を示した図。ここで、高さはエネルギーに対応し、横幅はその材料のそのエネルギーにおける状態密度に対応する。色の濃さはフェルミ・ディラック分布に従う(黒: 完全占有、白: 完全非占有)。金属半金属ではフェルミ準位 EF は少くとも一つのバンドの内部にある。絶縁体および半導体ではフェルミ準位はバンドギャップ中にある。ただし、半導体ではバンドがフェルミ準位の十分近くにあり、そのバンドを電子または正孔が熱占有する。

固体のバンド理論では、電子のエネルギー固有状態はバンド構造を形成する。結晶中の電子のエネルギーはバンド構造を形成する。電子はバンド構造中の1粒子エネルギー固有状態 ε を占有する。この1粒子描像は近似ではあるが、電子のふるまいの理解を容易にし、正しく適用すれば一般的に正しい結果を与える。

物質のバンド構造中の EF の位置は、電子のふるまいを決定する上で重要となる。フェルミ準位は現実のエネルギー準位に必ずしも対応しておらず(絶縁体でのフェルミ準位はバンドギャップの中にある)、バンド構造の存在も必要としない。

金属中の電子

金属中の自由電子模型では、金属中の電子はフェルミ気体を作ると考えることができる。金属のフェルミエネルギーは、絶対零度の金属中の電子をバンドの底から詰めていき、その数が系の全電子数になったところの電子のエネルギーである。

金属や半金属縮退半導体では、 EF は非局在バンドの中にある。 EF 近くの多数の状態は熱的に活性で、容易に電流を運ぶ。

金属の伝導電子の数密度はおよそ1028から1029 electrons/m3であり、通常の固体物質での原子の典型的な密度でもある。 この数密度からフェルミエネルギーを求めると、次のオーダーになることがわかる。

半導体・絶縁体中の電子

半導体絶縁体の場合、フェルミエネルギーが伝導帯価電子帯の間のバンドギャップの中にあり、エネルギー準位が存在しない。よって金属などでは成り立っていた「フェルミエネルギー = フェルミ粒子が占有している最も高いエネルギー準位」は、半導体・絶縁体では成り立たない。またフェルミエネルギーでのフェルミ分布関数の値1/2に、占有数の期待値という意味は無い。

真性半導体のフェルミエネルギーは、伝導帯のエネルギー、価電子帯のエネルギー有効状態密度を用いて次のように表される。

この第2項目は小さく、バンドギャップのほぼ中央に位置する。

非縮退半導体のフェルミエネルギーEFは、真性キャリア密度、伝導帯の電子密度、価電子帯の正孔密度を用いて次のように表せる[6]

ドープ量が多いほど、フェルミエネルギーの位置はバンド端の近くになる。

絶縁体では、 EF は大きなバンドギャップの中にあり、電荷担体の存在しうる(有限の状態密度を持つ)バンドから遠く離れている。

半導体や半金属においてバンド構造に対する EF の位置は、ドーピングやゲーティングによってかなりの程度コントロールすることができる。これらのコントロールは電極によって固定されている EF を変えるわけではなく、全体のバンド構造を上下している(時にはバンド構造の形も変える)。半導体のフェルミ準位についての詳細は、[7] などを参照。


  1. ^ Kittel, Charles. Introduction to Solid State Physics, 7th Edition. Wiley 
  2. ^ 例:Electronics (fundamentals And Applications) by D. Chattopadhyay, Semiconductor Physics and Applications by Balkanski and Wallis.
  3. ^ Kittel, Charles; Herbert Kroemer (1980-01-15). Thermal Physics (2nd Edition). W. H. Freeman. p. 357. ISBN 978-0-7167-1088-2. https://books.google.com/books?id=c0R79nyOoNMC&pg=PA357 
  4. ^ タウア・ニン 最新VLSIの基礎 第2版, Yuan Taur・Tak H. Ning・芝原健太郎・宮本恭幸・内田建, 丸善出版, 2013年1月.
  5. ^ 第8版 キッテル固体物理学入門, Charles Kittel・宇野良清・津屋昇・新関駒二郎・森田章・山下次郎, 丸善出版, 2005年12月.
  6. ^ B.L.アンダーソン、R.L.アンダーソン 著、樺沢宇紀 訳『半導体デバイスの基礎』 上巻(半導体物性)、丸善出版、2012年。ASIN 462106147XISBN 9784621061473https://www.maruzen-publishing.co.jp/item/b294199.html 
  7. ^ Sze, S. M. (1964). Physics of Semiconductor Devices. Wiley. ISBN 0-471-05661-8 
  8. ^ Introduction to Quantum Statistical Thermodyamics”. Utah State University Physics. 2014年4月23日閲覧。[リンク切れ]
  9. ^ Ashcroft, Neil W.; Mermin, N. David (1976). Solid State Physics. Holt, Rinehart and Winston. ISBN 0-03-083993-9 
  10. ^ Fermi level and Fermi function, from HyperPhysics
  11. ^ Sommerfeld, Arnold (1964). Thermodynamics and Statistical Mechanics. Academic Press 
  12. ^ 3D Fermi Surface Site”. Phys.ufl.edu (1998年5月27日). 2013年4月22日閲覧。
  13. ^ I. Riess, What does a voltmeter measure? Solid State Ionics 95, 327 (1197) [1]
  14. ^ Sah, Chih-Tang (1991). Fundamentals of Solid-State Electronics. World Scientific. p. 404. ISBN 9810206372 
  15. ^ Datta, Supriyo (2005). Quantum Transport: Atom to Transistor. Cambridge University Presss. p. 7. ISBN 9780521631457 






フェルミエネルギーと同じ種類の言葉


英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「フェルミエネルギー」の関連用語

フェルミエネルギーのお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



フェルミエネルギーのページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアのフェルミエネルギー (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。

©2024 GRAS Group, Inc.RSS