射影空間とは? わかりやすく解説

Weblio 辞書 > 辞書・百科事典 > 百科事典 > 射影空間の意味・解説 

射影空間

(projective space から転送)

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2025/02/12 19:13 UTC 版)

射影空間(しゃえいくうかん、: projective space) とは、その次元が n であるとき、(n + 1) 個の「数」の比全体からなる空間の事をさす。比を構成する「数」をどんな(あるいは)にとるかによって様々な空間が得られる。非ユークリッド幾何学のひとつである射影幾何学がその概念の端緒であるが、射影空間は位相幾何学微分幾何学代数幾何学など幾何学のあらゆる分野にわたって非常に重要な概念である。

定義

Kとする。K 上の n 次元の射影空間 KPn は、(n + 1) 個の K の要素の比 [x0 : x1 : ⋯ : xn] の全体の集合として定義される。すなわち、ベクトル空間 V = Kn+10 でないベクトルに対して、同値関係 (a0, a1, ..., an) ∼ (b0, b1, ..., bn) を、0 でない K の元 t が存在して任意の i = 0, 1, ..., n に対して bi = tai であることとして定義するとき、




英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「射影空間」の関連用語

射影空間のお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



射影空間のページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアの射影空間 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。

©2025 GRAS Group, Inc.RSS