凸結合
(convex combination から転送)
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2021/07/17 21:30 UTC 版)
ナビゲーションに移動 検索に移動![]() | この記事は検証可能な参考文献や出典が全く示されていないか、不十分です。2014年11月) ( |
数学の凸幾何学の分野において、凸結合(とつけつごう、英: convex combination)とは、和が 1 となるような非負係数を持つ点(ベクトルやスカラー、あるいはより一般にアフィン空間の点)の線型結合である。
より正式に、実ベクトル空間に有限個の点 が与えられたとき、それらの凸結合は次の式で表される点である。
ただし実数 は および を満たすものである。
特別な一例として、二点の間のすべての凸結合は、それらを結ぶ線分の上に存在する。
すべての凸結合は、与えられた点の凸包の中に含まれる。
線型結合の下で閉じていないが、凸結合の下で閉じているベクトル空間の部分集合が存在する。例えば、区間 は凸であるが、線型結合の下では実数直線全体を生成する。また別の例として、線型結合が非負性、アフィン性(積分の総和が 1)のいずれも保存しない確率分布の凸集合が挙げられる。
他の概念
関連する構成
- 錐結合は、非負係数による線型結合である。
- 加重平均は機能的には凸結合と同じであるが、記法としては異なる。加重平均の係数(重み)和は 1 である必要はないが、その代わりにその(係数)和で線型結合を明示的に割っている。
- アフィン結合は凸結合と似ているが、その係数は非負である必要はない。したがってアフィン結合は、任意の体上のベクトル空間において定義される。
関連項目
- アフィン包
- カラテオドリの定理 (凸包)
- 凸包
- 単体 (数学)
- 重心座標系
- 凸結合のページへのリンク