一様連続

一様連続(いちようれんぞく、英: uniformly continuous)とは、数学における関数の連続性を強めたもので、イプシロン-デルタ論法によって定式化される。直観的には「グラフを横に少しずらしても縦のずれが一様に小さいこと」とも言える[1]。
大雑把に言って、関数の一様連続性とは、引数 x の変化が小さいと関数値 f(x) の変化も一様に小さいことを指す。このとき、f(x) の変化の度合いは x の変化の度合いにのみ依存し、x の値にはよらない。つまり、f の定義域で x1 と x2 が十分に近ければ(x の値によらず)、f(x1) と f(x2) は近くなることである。
一様連続ならば連続であるが、逆は一般には成り立たない。しかし定義域が有界閉区間であれば、その区間上連続な関数は一様連続であることが知られている(ハイネ・カントールの定理)。
一様連続性の定義はユークリッド空間や、それを一般化した概念である距離空間において定義される。さらに一般に一様空間上でも定義可能である。
定義
以下では距離空間における定義を述べるが、ユークリッド空間における定義は、以下の X, Y をそれぞれ Rm, Rn とし、距離関数 dX, dY をそれぞれ Rm, Rn 上のユークリッド距離で与えればよい。
- 定義
- ジョン・L.ケリー、児玉之宏訳 (1979)、位相空間、吉岡書店、ISBN 978-4-8427-0131-8
- 一様連続のページへのリンク