モジュラー表現論
数学の一分野としてのモジュラー表現論(モジュラーひょうげんろん、英: modular representation theory)は表現論の一部として、有限群 G の正標数の体 K 上での線型表現を研究する。群論への応用を持つのみならず、モジュラー表現論は代数幾何学、符号理論、組合せ論、数論など他の数学分野においても自然に生じてくる。
有限群論において、ブラウアーがモジュラー表現論を用いて証明した指標理論的な結果は、有限単純群の分類の過程で、特にそのシロー 2-群が適当な意味において小さすぎるために純群論的手法では従順でないと特徴付けられる単純群に対して、重要な役割を果たした。また、グローバーマンがブラウアーの展開した理論を用いて示した、有限群の位数 2 の元の埋め込みに関する一般的な結果は、Z∗-定理と呼ばれ、分類を進めるうえで特に有効であった。
係数体 K の標数が群 G の位数を整除しないならば、マシュケの定理によりモジュラー表現は完全可約となり、これは通常表現(標数 0 の表現)と同様である。マシュケの定理の証明は群の位数が割れないことに依拠しており、これは K の標数が G の位数を整除するときには意味を成さない。この場合、表現は必ずしも完全可約に限らず、通常表現の場合あるいは標数が群の位数と互いに素の場合とは対照的である。以下ではほとんどの場合、体 K は十分大きい(例えば K が代数閉体ならば十分)ものと暗黙に仮定する(さもなくば、主張をもう少し仔細に込み入ったものとせねばならないであろう)。
歴史
有限体上の表現論に関する最初期の結果として Dickson (1902) は、標数 p が群の位数を割らないならばその表現論は標数 0 の表現論と同様にできることを示した。ディクソンは、幾つかの有限群のモジュラー不変量についても研究している他、Dickson行列に基づいた各種の符号はGabidulin符号と共に古典的ではあるが符号理論における重要な応用に寄与している。標数が群の位数を割る場合のモジュラー表現の系統的な研究は、Brauer (1935) に始まり、以来数十年の研究がつづけられている。
例
二元体 F2 上の位数 2 の巡回群の表現を求めることは、平方が単位行列となるような行列を求める問題に等価である。標数が 2 でない任意の体上では、そのような行列は