面積と体積の一般的な式
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2017/05/13 04:57 UTC 版)
最初に、単位球面の古典的な式が半径1でx軸、y軸、z軸で違いがない楕円面の式となることは重要である。 f ( x , y , z ) = x 2 + y 2 + z 2 = 1 {\displaystyle f(x,y,z)=x^{2}+y^{2}+z^{2}=1} V n = π n / 2 Γ ( 1 + n / 2 ) = { π n / 2 / ( n / 2 ) ! if n ≥ 0 is even, π ⌊ n / 2 ⌋ 2 ⌈ n / 2 ⌉ / n ! ! if n ≥ 0 is odd, {\displaystyle V_{n}={\frac {\pi ^{n/2}}{\Gamma (1+n/2)}}={\begin{cases}{\pi ^{n/2}}/{(n/2)!}&{\text{if}}\;\;n\geq 0\;\;{\text{is even,}}\\~\\{\pi ^{\lfloor n/2\rfloor }2^{\lceil n/2\rceil }}/{n!!}&{\text{if}}\;\;n\geq 0\;\;{\text{is odd,}}\end{cases}}} ここで n!! は二重階乗であり、 ⌊ ⋅ ⌋ , ⌈ ⋅ ⌉ {\displaystyle \lfloor \cdot \rfloor ,\lceil \cdot \rceil } は床関数と天井関数である。 (n−1) 次元単位球面の超体積(すなわち n 次元単位球体の表面積)An は次のように表せる A n = n V n = n π n / 2 Γ ( 1 + n / 2 ) = 2 π n / 2 Γ ( n / 2 ) , {\displaystyle A_{n}=nV_{n}={\frac {n\pi ^{n/2}}{\Gamma (1+n/2)}}={\frac {2\pi ^{n/2}}{\Gamma (n/2)}}\,,} ただし最後の等号は n > 0 に対してのみ成り立つ。 いくつかの n {\displaystyle n} に対応した表面積と体積は次のようになる。 n {\displaystyle n} A n {\displaystyle A_{n}} (表面積) V n {\displaystyle V_{n}} (体積)0 0 ( 1 / 0 ! ) π 0 {\displaystyle 0(1/0!)\pi ^{0}} 0 ( 1 / 0 ! ) π 0 {\displaystyle (1/0!)\pi ^{0}} 1 1 1 ( 2 1 / 1 ! ! ) π 0 {\displaystyle 1(2^{1}/1!!)\pi ^{0}} 2 ( 2 1 / 1 ! ! ) π 0 {\displaystyle (2^{1}/1!!)\pi ^{0}} 2 2 2 ( 1 / 1 ! ) π 1 = 2 π {\displaystyle 2(1/1!)\pi ^{1}=2\pi } 6.283 ( 1 / 1 ! ) π 1 = π {\displaystyle (1/1!)\pi ^{1}=\pi } 3.141 3 3 ( 2 2 / 3 ! ! ) π 1 = 4 π {\displaystyle 3(2^{2}/3!!)\pi ^{1}=4\pi } 12.57 ( 2 2 / 3 ! ! ) π 1 = ( 4 / 3 ) π {\displaystyle (2^{2}/3!!)\pi ^{1}=(4/3)\pi } 4.189 4 4 ( 1 / 2 ! ) π 2 = 2 π 2 {\displaystyle 4(1/2!)\pi ^{2}=2\pi ^{2}} 19.74 ( 1 / 2 ! ) π 2 = ( 1 / 2 ) π 2 {\displaystyle (1/2!)\pi ^{2}=(1/2)\pi ^{2}} 4.935 5 5 ( 2 3 / 5 ! ! ) π 2 = ( 8 / 3 ) π 2 {\displaystyle 5(2^{3}/5!!)\pi ^{2}=(8/3)\pi ^{2}} 26.32 ( 2 3 / 5 ! ! ) π 2 = ( 8 / 15 ) π 2 {\displaystyle (2^{3}/5!!)\pi ^{2}=(8/15)\pi ^{2}} 5.264 6 6 ( 1 / 3 ! ) π 3 = π 3 {\displaystyle 6(1/3!)\pi ^{3}=\pi ^{3}} 31.01 ( 1 / 3 ! ) π 3 = ( 1 / 6 ) π 3 {\displaystyle (1/3!)\pi ^{3}=(1/6)\pi ^{3}} 5.168 7 7 ( 2 4 / 7 ! ! ) π 3 = ( 16 / 15 ) π 3 {\displaystyle 7(2^{4}/7!!)\pi ^{3}=(16/15)\pi ^{3}} 33.07 ( 2 4 / 7 ! ! ) π 3 = ( 16 / 105 ) π 3 {\displaystyle (2^{4}/7!!)\pi ^{3}=(16/105)\pi ^{3}} 4.725 8 8 ( 1 / 4 ! ) π 4 = ( 1 / 3 ) π 4 {\displaystyle 8(1/4!)\pi ^{4}=(1/3)\pi ^{4}} 32.47 ( 1 / 4 ! ) π 4 = ( 1 / 24 ) π 4 {\displaystyle (1/4!)\pi ^{4}=(1/24)\pi ^{4}} 4.059 9 9 ( 2 5 / 9 ! ! ) π 4 = ( 32 / 105 ) π 4 {\displaystyle 9(2^{5}/9!!)\pi ^{4}=(32/105)\pi ^{4}} 29.69 ( 2 5 / 9 ! ! ) π 4 = ( 32 / 945 ) π 4 {\displaystyle (2^{5}/9!!)\pi ^{4}=(32/945)\pi ^{4}} 3.299 10 10 ( 1 / 5 ! ) π 5 = ( 1 / 12 ) π 5 {\displaystyle 10(1/5!)\pi ^{5}=(1/12)\pi ^{5}} 25.50 ( 1 / 5 ! ) π 5 = ( 1 / 120 ) π 5 {\displaystyle (1/5!)\pi ^{5}=(1/120)\pi ^{5}} 2.550 n ≥ 2 に対する小数は近似値である。
※この「面積と体積の一般的な式」の解説は、「単位球面」の解説の一部です。
「面積と体積の一般的な式」を含む「単位球面」の記事については、「単位球面」の概要を参照ください。
- 面積と体積の一般的な式のページへのリンク