閉多様体
(開多様体 から転送)
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2018/01/27 01:04 UTC 版)
ナビゲーションに移動 検索に移動数学において、閉多様体 (closed manifold) とは、境界を持たないコンパクトな多様体のことである。境界が存在しえない文脈では、任意のコンパクト多様体が閉多様体である。
コンパクト多様体は、直感的な意味で、「有限」である。コンパクト性の基本的な性質により、閉多様体は連結閉多様体の有限個の非交和である。幾何学的トポロジーの最も基本的な目的の 1 つは、閉多様体がどのくらいあるかを理解することである。
例
最も簡単な例は円であり、これは 1 次元のコンパクトな多様体である。閉多様体の別の例はトーラスとクラインの壺である。反例としては、実数直線はコンパクトでないから閉多様体ではない。円板はコンパクトな 2 次元多様体だが、境界を持つので閉多様体ではない。
性質
すべてのコンパクトな位相多様体は、ホイットニーの埋め込み定理によって、ある n に対して この項目は、位相幾何学に関連した書きかけの項目です。この項目を加筆・訂正などしてくださる協力者を求めています(プロジェクト:数学/Portal:数学)。
- 閉多様体のページへのリンク