平行移動 (リーマン幾何学)とは? わかりやすく解説

Weblio 辞書 > 辞書・百科事典 > 百科事典 > 平行移動 (リーマン幾何学)の意味・解説 

平行移動 (リーマン幾何学)

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2024/12/22 20:36 UTC 版)

幾何学において、平行移動(parallel transport)とは、多様体上の滑らかな曲線に沿って幾何学的なデータを移動する方法である。

概要

球体上の閉じたループ(AからN、Bを経由してAに戻る)に沿ってベクトルを平行移動する。 ねじれ角は、ループに囲まれた領域の面積に比例する。

多様体が アフィン接続を備えている(あるいは 接束上に共変微分接続 が定まっている場合)、この接続を使用すると、接続に対する平行性を維持できるように、曲線に沿って、多様体に”生えた”ベクトルを移動できる。したがって、接続が定める平行移動は、ある意味では、「曲線に沿って多様体の局所的なジオメトリを移動する方法」、つまり、近くの点同士のジオメトリを関連付ける(「接続」(connect)する)方法を提供する。

意味を成す「平行移動」の特徴はいろいろとあり得るが、一つの特徴 —つまり、曲線上の点達のgeometries を関連づける(connectingする、接続する)—接続を定めることに相当する。実際、通常の意味での接続の概念は、平行移動の無限小近似である。また逆に、平行移動を定めることは接続の局所的な実現である。

平行移動は、接続の局所的な実現を提供するので、ホロノミー英語版として知られている曲率の局所的な実現も提供する。 Ambrose–Singer theoremは曲率とホロノミーの間のこの関係を明示的に行う。

接続の他の特徴としては、固有の平行移動システムを備えることである。例えば、 ベクトル束のKoszul接続では、共変微分の場合と同じ方法で平行移動を定めることができる。 エーレスマン接続カルタン接続は、多様体から 主束の全空間に対する「曲線の持ち上げ」を定める。このような「曲線の持ち上げ」は、基準系の平行移動と考えられることがある。

ベクトル束上の平行移動

Mは滑らかな多様体、EMベクトル束であり、 このベクトル束Eは、共変微分 ∇を備える。 また、γ: IM は、開区間 Iによって径数づけられた滑らかな曲線である。

2段あるシルトのはしご。線分 A1X1A2X2 は、ベクトル A0X0 の曲線に沿った平行移動の1次の近似。

平行移動は、曲線に沿って有限のステップをとり、 レヴィ・チヴィタの擬平行四辺形英語版を、平行四辺形近似するシルトのはしごによって離散的に近似できる。

関連項目

脚注

外部リンク



このページでは「ウィキペディア」から平行移動 (リーマン幾何学)を検索した結果を表示しています。
Weblioに収録されているすべての辞書から平行移動 (リーマン幾何学)を検索する場合は、下記のリンクをクリックしてください。
 全ての辞書から平行移動 (リーマン幾何学) を検索

英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「平行移動 (リーマン幾何学)」の関連用語

平行移動 (リーマン幾何学)のお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



平行移動 (リーマン幾何学)のページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアの平行移動 (リーマン幾何学) (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。

©2025 GRAS Group, Inc.RSS