完全不連結空間
位相空間論やそれに関わる分野において、完全不連結空間(かんぜんふれんけつくうかん、totally disconnected space)は非自明な連結部分集合を持たないという意味で最も不連結な位相空間である。すべての位相空間において空集合と1点集合は連結である。完全不連結空間においてはこれらしか連結部分集合がない。
完全不連結空間の重要な例の1つはカントール集合である。別の例は p-進数体 Qp で、代数的整数論において重要な役割を果たす。
定義
位相空間 X は、X の連結成分が一点集合であるときに、完全不連結 (totally disconnected) であるという。
例
以下は完全不連結空間の例である。
- Willard, Stephen (2004), General topology, Dover Publications, ISBN 978-0-486-43479-7, MR2048350 (reprint of the 1970 original, MR0264581)
関連項目
- 完全不連結空間のページへのリンク