剰余類と正規部分群
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2019/09/26 09:28 UTC 版)
H が G の正規部分群ではないならば、その左剰余類と右剰余類は異なる(重要なこととして、左剰余類と右剰余類の中に一致するものがありうることには注意すべきである。たとえば a が G の中心に属する元ならば aH = Ha が成り立つ)。つまり、G の元 a で、aH = Hb が成立する元 b を持たないものが存在する。これは G の H を法とする左剰余類分解は、G の H を法とする右剰余類分解とは異なるということを意味している。(しかしながら、H が G の有限部分群でさえあれば、完全代表系は左剰余類と右剰余類で共通に取ることができる。) 翻って、部分群 N が正規であるための必要十分条件は、G に属する任意の元 g について gN = Ng となることである。このとき剰余類全体の成す集合は、aN ∗ bN = abN で定義される群演算 "∗" を備えた、商群 (quotient group, factor group) あるいは剰余(類)群 (residue class group) と呼ばれる群 G/N を成す。正規部分群に関する剰余類については(任意の右剰余類がそれ自身左剰余類であり、任意の左剰余類がそれ自身右剰余類となるから)左右の区別を要しない。
※この「剰余類と正規部分群」の解説は、「剰余類」の解説の一部です。
「剰余類と正規部分群」を含む「剰余類」の記事については、「剰余類」の概要を参照ください。
- 剰余類と正規部分群のページへのリンク