冪級数展開
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2022/06/10 05:03 UTC 版)
双曲線関数のテイラー展開あるいはローラン展開は、以下の式で与えられる。ただし、Bn, En はそれぞれベルヌーイ数 (B2 = 1/6, B4 = −1/30, …)、オイラー数 (E0 = 1, E2 = −1, …) である。 sinh x = ∑ n = 0 ∞ x 2 n + 1 ( 2 n + 1 ) ! = x + x 3 3 ! + x 5 5 ! + x 7 7 ! + ⋯ cosh x = ∑ n = 0 ∞ x 2 n ( 2 n ) ! = 1 + x 2 2 ! + x 4 4 ! + x 6 6 ! + ⋯ tanh x = ∑ n = 1 ∞ 2 2 n ( 2 2 n − 1 ) B 2 n x 2 n − 1 ( 2 n ) ! = x − x 3 3 + 2 x 5 15 − 17 x 7 315 + ⋯ , | x | < π 2 csch x = 1 x + ∑ n = 1 ∞ 2 ( 1 − 2 2 n − 1 ) B 2 n x 2 n − 1 ( 2 n ) ! = 1 x − x 6 + 7 x 3 360 − 31 x 5 15120 + ⋯ , 0 < | x | < π sech x = ∑ n = 0 ∞ E 2 n x 2 n ( 2 n ) ! = 1 − x 2 2 + 5 x 4 24 − 61 x 6 720 + ⋯ , | x | < π 2 coth x = 1 x + ∑ n = 1 ∞ 2 2 n B 2 n x 2 n − 1 ( 2 n ) ! = 1 x + x 3 − x 3 45 + 2 x 5 945 + ⋯ , 0 < | x | < π {\displaystyle {\begin{aligned}\sinh x&=\sum _{n=0}^{\infty }{\frac {x^{2n+1}}{(2n+1)!}}=x+{\frac {x^{3}}{3!}}+{\frac {x^{5}}{5!}}+{\frac {x^{7}}{7!}}+\dotsb \\[1ex]\cosh x&=\sum _{n=0}^{\infty }{x^{2n} \over (2n)!}=1+{\frac {x^{2}}{2!}}+{\frac {x^{4}}{4!}}+{\frac {x^{6}}{6!}}+\dotsb \\[1ex]\tanh x&=\sum _{n=1}^{\infty }{\frac {2^{2n}(2^{2n}-1)B_{2n}x^{2n-1}}{(2n)!}}=x-{\frac {x^{3}}{3}}+{\frac {2x^{5}}{15}}-{\frac {17x^{7}}{315}}+\dotsb ,\quad |x|<{\frac {\pi }{2}}\\[1ex]\operatorname {csch} x&={\frac {1}{x}}+\sum _{n=1}^{\infty }{\frac {2(1-2^{2n-1})B_{2n}x^{2n-1}}{(2n)!}}={\frac {1}{x}}-{\frac {x}{6}}+{\frac {7x^{3}}{360}}-{\frac {31x^{5}}{15120}}+\dotsb ,\quad 0<|x|<\pi \\[1ex]\operatorname {sech} x&=\sum _{n=0}^{\infty }{\frac {E_{2n}x^{2n}}{(2n)!}}=1-{\frac {x^{2}}{2}}+{\frac {5x^{4}}{24}}-{\frac {61x^{6}}{720}}+\dotsb ,\quad |x|<{\frac {\pi }{2}}\\[1ex]\coth x&={\frac {1}{x}}+\sum _{n=1}^{\infty }{\frac {2^{2n}B_{2n}x^{2n-1}}{(2n)!}}={\frac {1}{x}}+{\frac {x}{3}}-{\frac {x^{3}}{45}}+{\frac {2x^{5}}{945}}+\dotsb ,\quad 0<|x|<\pi \end{aligned}}}
※この「冪級数展開」の解説は、「双曲線関数」の解説の一部です。
「冪級数展開」を含む「双曲線関数」の記事については、「双曲線関数」の概要を参照ください。
- 冪級数展開のページへのリンク