フォイエルバッハ点とは? わかりやすく解説

Weblio 辞書 > 辞書・百科事典 > 百科事典 > フォイエルバッハ点の意味・解説 

フォイエルバッハ点

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2024/12/14 14:51 UTC 版)

フォイエルバッハの定理:九点円内接円及び傍接円接する

三角形幾何学ドイツ語版において、フォイエルバッハ点(フォイエルバッハてん[1][2]: Feuerbach point)は三角形九点円内接円接点を指す用語である。三角形の心として、クラーク・キンバーリング英語版Encyclopedia of Triangle CentersではX(11)に登録されている。名称は、カール・フォイエルバッハに由来する[3][4]

フォイエルバッハの定理(Feuerbach's theorem)は1822年[5]、フォイエルバッハによって発表された定理で、内接円と同様に、傍接円も九点円と接することが示された[6][7]。最も単純な証明の一つに内接円と傍接円と九点円の5円に対しケーシーの定理を適用するものや[8]自動定理証明を用いたものがある[9]澤山勇三郎はこの定理の証明を多く残した[10][11][12]

3つの傍接円と九点円の接点が成す三角形はフォイエルバッハ三角形(Feuerbach triangle)と呼ばれる。フォイエルバッハの定理の一般化にフォントネーの定理ロジャースの定理ハートの定理がある。

構成

三角形の内接円とは、三角形の3つのに内接するである。その中心である内心は、三角形の内角の二等分線の交点である。

三角形の九点円とは三角形の辺の中点から成る中点三角形頂垂線の足から成る垂足三角形外接円である。

この2円はただ一点で交わる、つまり接する。この点を三角形のフォイエルバッハ点という。

三角形の内接円と同様に、三角形には傍接円が存在する。傍接円は三角形の辺の1つと接し、さらに他の2辺の延長と接する円である。3つの傍接円もまた九点円と接する。その接点はフォイエルバッハ三角形と呼ばれる三角形を成す。

性質

フォイエルバッハ点の定義よりフォイエルバッハ点、内心九点中心英語版共線である[3][4]。この直線をIN線(IN line)という[13]

A直角とする三角形ABCについて、HABCに対する垂足、OB, OCABH, △ACHの内心、B', C'を辺AC, ABの中点とする。B'OC, C'OBABCのフォイエルバッハ点F0直交する。また、OBOCを直径とする円は、F0の他に、HABCの内接円とBCの接点、B'C'B, ∠Cの二等分線の交点(それぞれHAC,∠HABの二等分線も通る)も含む[16][17]

出典

  1. ^ 一松, 信 編『重心座標による幾何学』(初版)現代数学社、京都市、2014年、30頁。ISBN 978-4-7687-0437-0 
  2. ^ Evan Chen 著、兒玉 太陽, 熊谷 勇輝 , 宿田 彩斗 , 平山 楓馬 訳『数学オリンピック幾何への挑戦 ユークリッド幾何学をめぐる船旅』日本評論社、2023年、150頁。 ISBN 978-4535789784 
  3. ^ a b Kimberling, Clark (1994), “Central Points and Central Lines in the Plane of a Triangle”, Mathematics Magazine 67 (3): 163–187, doi:10.1080/0025570X.1994.11996210, JSTOR 2690608, MR 1573021, https://jstor.org/stable/2690608 .
  4. ^ a b c d Encyclopedia of Triangle Centers Archived April 19, 2012, at the Wayback Machine., accessed 2014-10-24.
  5. ^ Feuerbach, Karl Wilhelm; Buzengeiger, Carl Heribert Ignatz (1822), Eigenschaften einiger merkwürdigen Punkte des geradlinigen Dreiecks und mehrerer durch sie bestimmten Linien und Figuren. Eine analytisch-trigonometrische Abhandlung (Monograph ed.), Nürnberg: Wiessner, http://resolver.sub.uni-goettingen.de/purl?PPN512512426 .
  6. ^ Scheer, Michael J. G. (2011), “A simple vector proof of Feuerbach's theorem”, Forum Geometricorum 11: 205–210, arXiv:1107.1152, MR 2877268, http://forumgeom.fau.edu/FG2011volume11/FG201121.pdf .
  7. ^ フォイエルバッハの定理と計算による証明”. 高校数学の美しい物語 (2021年3月7日). 2024年7月15日閲覧。
  8. ^ Casey, J. (1866), “On the Equations and Properties: (1) of the System of Circles Touching Three Circles in a Plane; (2) of the System of Spheres Touching Four Spheres in Space; (3) of the System of Circles Touching Three Circles on a Sphere; (4) of the System of Conics Inscribed to a Conic, and Touching Three Inscribed Conics in a Plane”, Proceedings of the Royal Irish Academy 9: 396–423, JSTOR 20488927, https://jstor.org/stable/20488927 . See in particular the bottom of p. 411.
  9. ^ Chou, Shang-Ching (1988), “An introduction to Wu's method for mechanical theorem proving in geometry”, Journal of Automated Reasoning 4 (3): 237–267, doi:10.1007/BF00244942, MR 975146 .
  10. ^ ウジェーヌ・シャルル・カタラン 著、長沢亀之助 訳『幾何学定理及問題 3版』国定教科書共同販売所、1914年、610頁。doi:10.11501/930992 
  11. ^ 森本清吾『沢山勇三郎全集』岩波書店、1938年。doi:10.11501/1239383 
  12. ^ 沢山勇三郎, 森本清吾『初等幾何学』積善館、1931年。doi:10.11501/1174278 
  13. ^ CENTRAL LINES”. faculty.evansville.edu. 2024年7月15日閲覧。
  14. ^ Weisstein, Eric W. "Feuerbach Point". mathworld.wolfram.com (英語).
  15. ^ a b c d e Sandor Nagydobai Kiss (2016). “A Distance Property of the Feuerbach Point and Its Extension”. Forum Geometricorum vol 16: 283–290. https://forumgeom.fau.edu/FG2016volume16/FG201634.pdf. 
  16. ^ La découverte du théorème par Jean-Louis Ayme sur les-mathematiques.net
  17. ^ La démonstration synthétique sur le site de Jean-Louis Ayme

参考文献

関連項目

外部リンク




英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  
  •  フォイエルバッハ点のページへのリンク

辞書ショートカット

すべての辞書の索引

「フォイエルバッハ点」の関連用語

フォイエルバッハ点のお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



フォイエルバッハ点のページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアのフォイエルバッハ点 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。

©2025 GRAS Group, Inc.RSS