テオドロスの螺旋とは? わかりやすく解説

Weblio 辞書 > 辞書・百科事典 > 百科事典 > テオドロスの螺旋の意味・解説 

テオドロスの螺旋

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2025/05/07 10:20 UTC 版)

斜辺
螺旋の一部

半径

螺旋の半径の成長は任意の

フィリップ・J・デイヴィスによるテオドロスの螺旋を解析的につなげたもの。数字は整数である原点との距離。青は反対方向に螺旋を拡張したもの。

離散的なテオドロスの螺旋をどのように内挿して滑らかな曲線にするか、という問題は2001年にフィリップ・J・デイヴィスによって提案、解決された。階乗ガンマ関数に内挿するのにオイラーの公式を用いることを類推して、デイヴィスは次の式を用いた[7]

T(x)実数xにおいて、螺旋の複素平面上の座標を表す。ジェフリー・J・リーダー英語版Arieh Iserles英語版はさらにこの関数を研究した。次の関数方程式の解は一意的にT(x)のみに定まる。

初期条件はf(0) = 1かつ、偏角絶対値において、単調増加であることである[8]

解析的なデイヴィスの連続化は原点から反対方向の螺旋へと拡張できる[9]

図に、元の離散的なテオドロスの螺旋の節を緑の円で示してある。青い円は螺旋を反対方向に繋げたもので、整数の範囲でn番目の点の極半径がとなっている。破線の円は原点Oにおける曲率円である。

出典

  1. ^ a b c d e Hahn, Harry K. (2007), The ordered distribution of natural numbers on the square root spiral, arXiv:0712.2184 
  2. ^ Nahin, Paul J. (1998), An Imaginary Tale: The Story of , Princeton University Press, p. 33, ISBN 0-691-02795-1 
  3. ^ Plato; Dyde, Samuel Walters (1899), The Theaetetus of Plato, J. Maclehose, pp. 86–87, https://books.google.com/books?id=wt29k-Jz8pIC 
  4. ^ a b Long, Kate, A Lesson on The Root Spiral, オリジナルの11 April 2013時点におけるアーカイブ。, https://web.archive.org/web/20130411230043/http://courses.wcupa.edu/jkerriga/Lessons/A%20Lesson%20on%20Spirals.html 2008年4月30日閲覧。 
  5. ^ Teuffel, Erich (1958), “Eine Eigenschaft der Quadratwurzelschnecke”, Mathematisch-Physikalische Semesterberichte zur Pflege des Zusammenhangs von Schule und Universität 6: 148–152, MR 96160 
  6. ^ Hahn, Harry K. (2008), The distribution of natural numbers divisible by 2, 3, 5, 7, 11, 13, and 17 on the square root spiral, arXiv:0801.4422 
  7. ^ Davis (2001), pp. 37–38.
  8. ^ Gronau (2004).
  9. ^ Waldvogel (2009).

参考文献

関連項目




英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  
  •  テオドロスの螺旋のページへのリンク

辞書ショートカット

すべての辞書の索引

「テオドロスの螺旋」の関連用語

1
12% |||||

テオドロスの螺旋のお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



テオドロスの螺旋のページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアのテオドロスの螺旋 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。

©2025 GRAS Group, Inc.RSS