基底 (線型代数学) 性質

基底 (線型代数学)

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2023/11/01 04:01 UTC 版)

性質

ベクトル空間 V の部分集合 B が基底であるためには、以下に挙げるような互いに同値な条件のうちの何れか一つ(従って全部)を満足することが必要十分である。

  • BV の極小生成系である。即ち、BV の生成系であって、かつ B に真に含まれるどの部分集合V を生成しない。
  • BV のベクトルからなる極大線型独立系である。即ち、B は線型独立系であって、かつ B を真に含む V のどの部分集合も線型独立系でない。
  • V に属するどのベクトルも、B に属するベクトルの線型結合としてただ一通りに表される。この基底が順序付けられているとき、この表示の係数はこの基底に関する「座標」を与える(後述)。

任意のベクトル空間は基底を持つ(このことの証明には選択公理が必要である)。一つのベクトル空間では、全ての基底が同じ濃度(元の個数)を持ち、その濃度をそのベクトル空間の次元と呼ぶ。この事実は次元定理英語版と呼ばれる(証明には、選択公理のきわめて弱い形である超フィルター補題が必要である)。

a, b がともに実数であるような座標(数ベクトル)(a, b) 全てからなるベクトル空間 R2 を考える。このとき、R2 の任意のベクトル v = (a, b) は v = a (1,0) + b (0,1) と書けて、e1 := (1,0) と e2 := (0,1) は明らかに線型独立だから、{e1, e2} は R2 の基底になる。この自然で単純な基底を R2 の標準基底という。これ以外にも、任意の二つの線型独立なベクトル(例えば (1,1) と (−1,2) など)が、やはり R2 の基底を成す。

一つの数学的結果が複数のやり方で証明できることは普通であるが、ここでは {(1,1), (−1,2)} が R2 の基底を成すことの証明を三通りほど挙げてみる。

直接証明
定義に忠実に、二つのベクトル (1,1), (−1,2) が線型独立であることと R2 を生成することとを示す。
線型独立性
実数 a, b に対して線型関係
が成り立つとすると、(ab, a + 2b) = (0, 0), 即ち
となり、辺々引いて b = 0, これを代入して a = 0 を得る。故に線型独立性が示せた。
全域性
二つのベクトル (1,1), (−1,2) が R2 を生成することを示すには、いま (a, b) を R2 の勝手な元として、
を満たす実数 r, s の存在を言えばよい。これは即ち、方程式系
r, s について解けることに他ならない。辺々引いて s が、それを代入して r がそれぞれ
と求められるから、これで全域性も示された。
次元定理による証明
(−1,2) は明らかに (1,1) の定数倍ではないし、(1,1) も明らかに零ベクトルではないから、二つのベクトル (1,1), (−1,2) は線型独立。これを延長して基底が得られるはずだが、R2 の次元は 2 だから、{(1,1), (−1,2)} は既に R2 の基底を成している。
正則行列を用いた証明
二つのベクトル (1,1), (−1,2) を並べてできる行列の行列式を計算すると
となり、行列式が 0 ではない(正則である)から、この行列の二つの列ベクトル (1,1), (−1,2) は線型独立。従って R2 の基底となる。
  • より一般に、n-次単位行列(対角成分が 1 でそれ以外の成分が 0 の n×n-行列)の第 i-列ベクトルを ei とするとき、ベクトル族 {e1, e2, ..., en} は線型独立で、Rn を生成する。故にこれは Rn の基底を成し、また Rn の次元は n であると分かる。この基底を Rn標準基底という。
  • V を二つの函数 et および e2t で生成される線型空間とすると、これら二つの函数は線型独立であるから V の基底を成す。
  • 次数が高々 2 の多項式全体の成す集合 P2 において、{1, x, x2} は標準基底を成す。実数係数多項式全体の成す線型空間を R[x] で表せば、無限系列 (1, x, x2, …) は R[x] の基底を成す。従って、R[x] の次元は、可算濃度 0 に等しい。
  • 2×2-行列全体の成す集合 M2,2 において、(m,n)-成分が 1 でそれ以外の成分が 0 の 2×2-行列を Emn と書けば、{E11, E12, E21, E22} は標準基底である。

全域的かつ線型独立なベクトルからなる集合を標準基底から無数に作ることができる。

順序基底と座標系

本ページでは簡単のため、主に基底は単なる集合として扱っており、各ベクトルの順序についての概念は含めていない。ただし、専門的な書籍では基底と呼んだ時にベクトルの順序も含めたうえで意味するとが多い。例えば、その場合には(v1, …, vn)と(vn, …, v1)は異なる基底とみなされる。 このような順序を含めた意味での基底を用いなければ、基底の変換と正則行列との対応が取れない。またベクトルを座標表現して扱うとき、「第一座標」・「第二座標」のようなお決まりの表現を用いるには、基底に特定の順序付けがされていないと意味を成さない。有限次元ベクトル空間ならば、最初の n-個の自然数を添字に用いて (v1, …, vn) のようにするのが典型的である。順序の概念を含めているかどうかの誤解を避けるために、順序付けられた基底は、順序基底 (ordered basis)、 標構 あるいは (frame) とも呼ばれる。

V F 上の n-次元ベクトル空間であるものとする。V の順序基底を一つ選ぶことは、数ベクトル空間 Fn (座標全体のなすベクトル空間と考えられる)から V への線型同型写像 φ を一つ選ぶことと等価である。これを見るのに Fn の標準基底が順序基底であることが利用できる。

まず、線型同型 φ: FnV が与えられているとき、V の順序基底 (vi)1≤in

vi = φ(ei) for 1 ≤ in

で与えることができる。ただし (ei)1≤inFn の標準基底である。

逆に、順序基底 (vi)1≤in が与えられているとき、

で定まる φ: FnV が線型同型であることを見るのは難しくない。

これら二つの構成が互いに逆になっていることは明らかであるから、V の順序基底とFn から V への線型同型との間に一対一対応があることがわかる。

順序基底 (vi) によって定まる線型同型 φ の逆写像は V に「座標系」を定める。即ち、ベクトル vV に対して φ−1(v) = (a1, a2,...,an) ∈ Fn であるならば、各成分 aj = aj(v) は v = a1(v) v1 + a2(v) v2 + ... + an(v) vn と書けるという意味で v の座標を与える。

ベクトル v を各成分 aj(v) へ写す各写像は、φ−1 が線型ゆえ、V から F への線型写像になる。即ちこれらは線型汎函数であり、またこれらは V の双対空間の基底を成し、双対基底と呼ばれる。


注釈

  1. ^ の線形結合で定義づけられる。ゆえに は線形結合で表現できない。
  2. ^ 一次独立条件式 が矛盾することから明らか
  3. ^ 有限ベクトル空間 は要素数有限の生成系で張られる
  4. ^ より は成立し得ない
  5. ^ 有限次元ベクトル空間の定義から の元は有限個であり、取り出す操作は必ず有限回で終了する。
  6. ^ 下で を満たすのは のみ。
  7. ^ "生成系内の基底延長定理" でも とすることで同様に証明できる。

出典

  1. ^ a b "ベクトルの集合 ... が V の基底であることは ... V を生成 ... 一次独立 ... の二つの条件を満たしていることと同値である。多くの本が、こちらを定義に採用している。" 松本. (2015). 行列を知らない人のための線形代数学入門. 広島大学.
  2. ^ Halmos, Paul Richard (1987) Finite-dimensional vector spaces (4th edition) Springer-Verlag, New York, page 10, ISBN 0-387-90093-4
  3. ^ "基底の延長定理 ... Voを ... Vの一次独立なベクトルとする ... Voにいくつかのベクトル ... を加えた集合 ... をVの基底とすることができる" 丹下. (2015). 線形代数II演習 第5回 -基底の延長、補空間-. 筑波大学, 線形代数II演習.
  4. ^ "V を有限次元ベクトル空間、S ⊂ V を1次独立である部分集合、S ⊂ T ⊂ V を V を生成する部分集合とする。そのとき、V は、S ⊂ B ⊂ T を満たす基底 B を持つ。" Hesselholt. (2012). 数学通論 II 基底と次元. 名古屋大学.
  5. ^ "基底の存在定理 有限次元ベクトル空間 V != {0} には基底が存在する。" 東京工業大学. (2013). 基底の存在と次元.
  6. ^ Hamel 1905
  7. ^ http://www.scielo.cl/pdf/proy/v26n3/art01.pdf
  8. ^ Notes on geometry, by Elmer G. Rees, p. 7
  9. ^ Some remarks about additive functions on cones, Marek Kuczma





英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「基底 (線型代数学)」の関連用語

基底 (線型代数学)のお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



基底 (線型代数学)のページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアの基底 (線型代数学) (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。

©2024 GRAS Group, Inc.RSS