部分体とは? わかりやすく解説

Weblio 辞書 > 辞書・百科事典 > 百科事典 > 部分体の意味・解説 

体の拡大

(部分体 から転送)

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2024/08/22 03:30 UTC 版)

抽象代数学のとくに体論において体の拡大(たいのかくだい、: field extension)は、体の構造や性質を記述する基本的な道具立ての一つである。

体の拡大の理論において、通常は非可換な体を含む場合を扱わない(そのようなものは代数的数論に近い非可換環論あるいは多元環論の範疇に属す)。ただし、非可換体(あるいはもっと一般の)の部分集合が、非可換体の演算をその部分集合へ制限して得られる演算により、その非可換体を上にある体として(可換な)体構造をもつとき、元の非可換体の(可換)部分体と呼び、元の非可換体を(非可換)拡大体と呼ぶことがある。

以下本項では特に断りの無い限り、体として可換体のみを扱い、単に体と呼称する。

定義

ガロア対応の例

ガロア拡大 (Galois extension) とは正規かつ分離的な拡大体のことである[17]。体の拡大 K/k が与えられたとき、自己同型群 Aut(K/k) を考えることができる;これは k の各元を固定するすべての体の準同型からなる。ガロア拡大に対してはこの自己同型群は拡大のガロア群と呼ばれる[17]。またガロア群がアーベル群となるような拡大はアーベル拡大と呼ばれる。体の拡大が与えられたとき、その中間体にしばしば興味がある。ガロア拡大とガロア群の著しい特徴は中間体の記述が完全にできることである:ガロア理論の基本定理で述べられているように中間体とガロア群の部分群の間には全単射が存在する[18]

拡大の準同型

体の準同型というのは、体を単位的環とみなしたときの単位的環の準同型で、体の単純性から単射となるため通常は中への同型と呼ばれる。一方、拡大 K/k が与えられたとき、上の体 K に下の体 k が特別な構造として備わっていると考えて、K の自己準同型の中でも k に自明に作用するものが特別に扱われる(これは Kk 上の多元環とみたときの k-多元環の自己準同型である)。

K の自己準同型 f によって k の元が動かされないということは、k の零でない元が f で零に写されることが無いので、そのような f は零準同型にならず、さらに拡大 K/k が有限次拡大ならば、f は上への同型になる。k の元を動かさない K の自己同型を、K における k 上の同型あるいは k-同型という[19]。また、拡大 K/k 上の自己同型ということもある。Kk 同型全体を Aut(K/k) または Autk(K) などで表す。Aut(K/k) は写像の合成を積として群をなし、Kk-自己同型群と呼ばれる。また、拡大 N/k正規ならば k-自己同型群 Aut(N/k) を特に拡大 N/kガロア群と呼んで、Gal(N/k)G(N/k) と記す。

なお一般に二つの拡大 K/kL/l があって、上の体の中への同型 f: KL と下の体の中への同型 g: kl が与えられるとき、

この項目は、抽象代数学に関連した書きかけの項目です。この項目を加筆・訂正などしてくださる協力者を求めていますプロジェクト:数学Portal:数学)。




英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「部分体」の関連用語

部分体のお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



部分体のページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアの体の拡大 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。

©2025 GRAS Group, Inc.RSS