Multiplicative groupとは? わかりやすく解説

Weblio 辞書 > 辞書・百科事典 > 百科事典 > Multiplicative groupの意味・解説 

乗法群

(Multiplicative group から転送)

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2022/07/13 05:13 UTC 版)

数学群論において、用語乗法群 (multiplicative group) は次の概念の1つを意味する:

  • 、あるいはその演算の 1 つとして乗法をもつ他の構造の、可逆元乗法の下でなす群[1]。体 F の場合には、群は {F ∖ {0}, •} である、ただし 0 は F零元であり二項演算 • は体の乗法である。
  • 代数的トーラス英語版 〖GL〗⁡(1).

1 の冪根の群スキーム

1の n 乗根の群スキーム (group scheme of n-th roots of unity) は定義によって群スキーム英語版と考えて乗法群 〖GL〗⁡(1) への n ベキ写像の核である。つまり、任意の整数 n > 1 に対して、単位元として働く射 e とともに、n 乗をとる乗法群の射を考えそのスキーム論の意味で適切なファイバー積をとることができる。

得られる群スキームは μn と書かれる。体 K 上とったときそれが被約スキーム英語版を生じることと K標数n を割らないことは同値である。これによってそれは非被約スキーム(構造層冪零元があるスキーム)のいくつかの重要な例の源となる。例えば任意の素数 p に対して p 個の元からなる有限体上の μp

この現象は代数幾何学の古典的な言葉で容易には表現されない。例えば標数 pアーベル多様体の双対理論英語版Pierre Cartier の理論)を表現するのにそれはかなり重要であることがわかる。この群スキームのガロワコホモロジーはクンマー理論を表現する方法である。

  • n を法とする整数の乗法群英語版は群 の可逆元が乗法についてなす群である。n が素数でないとき、0 の他に可逆でない元が存在する。

脚注

  1. ^ See Hazewinkel et al. (2004), p. 2.

参考文献

  • Michiel Hazewinkel, Nadiya Gubareni, Nadezhda Mikhaĭlovna Gubareni, Vladimir V. Kirichenko. Algebras, rings and modules. Volume 1. 2004. Springer, 2004. ISBN 1-4020-2690-0

関連項目




英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「Multiplicative group」の関連用語

Multiplicative groupのお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



Multiplicative groupのページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアの乗法群 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。

©2025 GRAS Group, Inc.RSS