マーカス理論
この項目「マーカス理論」は翻訳されたばかりのものです。不自然あるいは曖昧な表現などが含まれる可能性があり、このままでは読みづらいかもしれません。(原文:en:Marcus theory) 修正、加筆に協力し、現在の表現をより自然な表現にして下さる方を求めています。ノートページや履歴も参照してください。(2016年7月) |
マーカス理論(英語: Marcus theory)は、ある化合物から別の化合物に電子が移動する反応の速度(電子移動速度)を記述するための理論である。
ルドルフ・A・マーカスにより1956年から研究が進められた[1]。
電子が移る元となる化合物を電子ドナー、電子が移る先の化合物を電子アクセプターと呼ぶ。
元々は、例えば Fe2+/Fe3+ イオンのような電荷のみが異る化学種の間での構造変化を伴わない電子の移動(外圏型電子移動反応)に取り組むために定式化されたものである。後に溶媒和距離や配位数の変化による効果が伴う(Fe(H2O)2+ と Fe(H2O)3+ では Fe-O 距離が異る)内圏型電子移動反応の寄与を取り込めるよう拡張された[注 1][2]。
化学結合の形成および開裂を伴わない電子移動において、マーカス理論は、構造変化を伴う化学反応に対して導出されたアイリングの遷移状態理論に取って代わる理論である。これら二つの理論は同じ指数関数型の反応速度式を与える。しかし、アイリングの理論では反応過程が進むにつれて反応相手と強く結びついて構造の決まった活性錯体が生じるのに対して、マーカス理論では反応相手との結び付きは弱いままにとどまり、それぞれの個別性が保たれる。熱的に誘起される溶媒(外圏型)もしくは溶媒和鞘や配位子(内圏型)などの環境の再配向により、構造的に安定な構造が電子の飛び移り以前に、独立して実現される。
元々の外圏型電子移動反応向けの古典的マーカス理論により、溶媒の重要性が実証され、溶媒の分極特性と反応物のサイズ、酸化還元反応にともなうギブズエネルギー変化 ΔG0 から、活性化ギブズエネルギーを計算できるようになった。マーカス理論から得られる最も驚くべき結論は、発エルゴン性が高くなるにつれて通常は速くなるはずの反応速度が、逆に遅くなる「逆転領域」が ΔG0 が負に大きい領域に存在するということである。30年にわたる逆転領域の探索が行われ、実験的に疑いの余地なく電子移動反応速度が遅くなることが実証されたのは1984年のことである。
マーカスは1992年、この理論を確立した功績に対してノーベル化学賞を受賞した。マーカス理論は、光合成や腐蝕、ある種の化学発光やいくつかの型の太陽電池その他、数々の化学的・生物学的に重要な反応の説明に用いられている。内圏型や外圏型反応に加えて、不均一電子移動反応を扱うための拡張も成されている。
一電子酸化還元反応
化学反応により、分子中の原子団もしくは錯体中の配位子が置換されたり、原子団もしくは配位子が脱離したり、分子内あるいは錯体内で転移したりすることがある。しかし、電子移動反応では単に電荷が反応物間で交換されるだけのこともあり、この酸化還元反応は結合の形成や開裂を伴うことがなく、イオンや遷移金属錯イオンの無機化学において、非常に単純に見える。このような反応は、しばしば明確な色の変化をともなう。例えば遷移金属錯イオンではこの現象が良く知られているが、有機分子でも電子の授受により色を変えるものが、例えば電子を受けとると青になるためメチルビオローゲンの別名がある除草剤のパラコート (N,N-ジメチル-4,4'-ビピリジニウムジクロリド) など、いくつか知られている。この型の電子移動反応の理論化をマーカスは行った。ここから先は議論の推移とその結果を示す。数学的な発展と詳細については、原著論文[3][4]を参照されたい。
酸化還元反応では、電子ドナー D と電子アクセプター A が対になって反応を起こす。反応が起きるためには、D と A が互いに拡散しあう必要がある。これらは前駆錯体、通常は速度論的で不安定な、溶媒和遭遇錯体を形成し、さらに電子移動反応により後続錯体に変換され、最終的に拡散により解離する。したがって、一電子電子移動反応は次のように書ける。
Fig. 1. 溶媒中の二つの導体球の外圏エネルギーを表わす放物線。放物線 i: 一つ目の電荷が二つ目に移動する、放物線 f: 二つ目の電荷が一つ目に移動する。横軸は移動する電荷の量 Δe もしくは誘起された分極 P 縦軸はギブズエネルギーを表わす。ΔG(0)‡ = λo/4 は Δe = 0.5 における再配向エネルギーで、自己交換反応における活性化エネルギーに相当する。 もちろん、この古典的模型では任意の量 Δe が移動することが可能である。であるから、非平衡状態のエネルギー、そして溶媒の分極エネルギーは Δe の関数として調べることができる。従ってマーカスは全ての溶媒分子の座標を、非常に洗練された方法でまとめ、移動した電荷量 Δe から決まる単一の溶媒分極座標 Δp に代表させた。これにより彼はエネルギーをたった二つの座標を用いて次のように表わすことができた。 G = f(Δe) この、溶媒中の二つの導体球についての結果が、次に示すマーカスの公式である。
Fig. 2 異なる酸化還元反応に対するマーカス放物線: f1 は正の ΔG0 に、f(0) は自己交換反応における ΔG0 = 0 に(破線)、 f2 穏やかに負の ΔG0 に(ΔG‡ = 0 が満たされる様に選んである)、そして f3 大きく負の ΔG0 に対応する。活性化ギブズエネルギー ΔG‡ は f1 (b1) から f(0) (a) を通って f2 (0) までは減少し、そして再び増加して f3 に至る(「マーカスの逆転領域」)。 マーカスの公式は活性化ギブズエネルギーが反応ギブズエネルギーに対して二乗で依存することを示している。反応するホスト化学種は通常、ΔG0 が負になればなるほどより速く反応することは良く知られている。多くの場合では線形な関係が見られる。マーカスの公式によると、より発エルゴン性になるにつれて反応は速くなる領域もあるが、それは ΔG0 が正か負であるにしろ絶対値が小さい領域だけである。マーカスの公式によれば、発エルゴン性の非常に高い酸化還元反応、つまり ΔG0 が負でその絶対値が λo の絶対値より大きい場合は活性化エネルギーが増加するはずであるということは驚くべきことである。この反応ギブズエネルギー領域は「マーカスの逆転領域」と呼ばれる。Fig. 2 を見れば、ΔG0 を減らしつづければ放物線 i と f の交点が上昇する、つまり活性化エネルギーが上昇することが瞭然であろう。したがって、ln k vs. ΔG0 グラフには頂点があるはずである。
ET 速度の最大値は ΔG‡ = 0 にあると期待される。このとき、Δe = 0 かつ q = 0 (Fig. 2) であり、すなわち前駆錯体の平衡状態において電子の飛び移りが起こることを示している。熱による活性化は必要なく、この反応はバリアレスとなる。逆転領域においては分極は電荷分布の言葉では、アクセプターからドナーに電荷が移動した想像しにくい状態に相当する。もちろん、実際ではこんなことは起こらない。この臨界分極を実現するのは実際の電荷ではなく、溶媒中の熱揺動である。この分極は逆転領域における電荷移動には必要なもので、他のどんな分極とも同様に、いくらかの確率で実現しうる[注 5]。電子はそれが実現するのを待って飛び移るのである。
内圏型電子移動
外圏模型では、ドナー・アクセプターおよびそれらに強く結び付いた溶媒和殻、もしくは錯体における配位子は剛構造を形成していると考えられ、電子移動反応の過程において変化しない。しかし、内圏における距離はドナーおよびアクセプターの電荷に依存する。例えば、錯体の電荷が異なれば中心イオン-配位子間距離も異なる。そして、再びフランク・コンドンの原理に従い、電子移動が起こるためには前駆錯体と後続錯体とが同一の、もちろん非常に歪んだ原子核配置を持つ必要がある。この場合、エネルギー要件は自動的に満たされる。
この内圏の場合ではアレニウスの概念が成り立ち、決まった構造の遷移状態に原子核の移動を伴う反応座標に沿って実現される。後続錯体を形成するのには原子核の移動はそれ以上必要なく、電子が移動するだけでよい。これが遷移状態理論との違いである。内圏エネルギーに対する反応座標は振動により支配され、酸化剤と還元剤とでは異なる[8]。
自己交換系 Fe2+/Fe3+ では鉄イオンを取り囲む6つの水分子対称収縮振動のみを考えればよい[8]。この振動をそれぞれ周波数
Fig. 3 内圏および外圏再配向を含む電子移動エネルギーダイアグラム: 縦軸はギブズエネルギー、横軸は「反応座標」すなわち(溶媒再配向を含む)全ての原子核の動きを代表する単純化された軸である。 ドナーとアクセプターの電子カップリングの強さにより、電子移動反応が断熱であるか非断熱であるかが決まる。非断熱の場合はカップリングは弱い。つまり、Fig. 3 における HAB がドナーとアクセプターの再配向エネルギーに比べて小さく、独立性が保たれる。系はある確率で前駆ポテンシャルエネルギー曲線と後続ポテンシャルエネルギー曲線に乗り移る。断熱の場合はカップリングがそれなりにあり、2 HAB のギャップはより大きく、系はより低いポテンシャルエネルギー曲線上に留まる[注 6]。
マーカス理論は前述のとおり、非断熱の場合を表現している[注 7]。したがって半古典ランダウ・ツェナー理論を適用して系がポテンシャルエネルギー曲線の交差領域の一回通るごとにドナーとアクセプターの相互変換が起こる確率
Fig.4. パルス放射分解によりアニオン化したビフェニル化学種をドナーとして、ステロイド化学種を剛直なスペーサーとして、いくつかの芳香族炭化水素 (1−3) およびキノン (4−8) をアクセプターとして反応させた際のマーカス挙動[注 9] 後知恵で言うならば、反応相手が電子の飛び移りに最適な位置まで自由に拡散することができるような系、すなわち ΔG‡ = 0 かつ ΔG0 = −λo を満たすような系を探せばよいと思われるかもしれない。λo は R に依存するから、λo は R が大きくなるほど、かつ放物線の開口が小さくなるほど増加する。形式的には、Fig. 2 の放物線を狭くして、放物線 f と i が頂点で交わるようにすることは常に可能である。そのとき、常に ΔG‡ = 0 が成り立ち、速度定数 k は負に非常に大きい ΔG0 では最大拡散値が常に成り立つ。しかし、この現象には例えば励起状態の関与や速度定数の低下などの別の概念もあり[1]、いままでのところ逆転領域は測定されていない。
マーカスらはここに概説した理論よりも更に発展した理論を開発している。中でも、統計的側面や量子効果を取り入れたものがあり[10]、化学発光[11]や電極反応の理論[12]に応用されている。マーカスは1992年にノーベル化学賞を受賞しており、受賞講演で彼の業績についての展望を述べている[1]。
関連項目
脚注
- ^ マーカスのアプローチとは違い、Noel S. Hush による内圏型電子移動反応理論では移動反応に際し幾何座標の変化につれて電子密度が「連続的に」変化する様子が言及され、マーカスと同様溶媒の影響も考慮される。
- ^ マーカスは反応物の真空状態をエネルギーの零点とした
- ^ 注意: 外圏再配向エネルギーの放物線的依存性は反応物や溶媒の振動からの帰結ではない。
- ^ これらはしばしばマーカス交差反応 (Marcus cross reaction) と呼ばれる。
- ^ 逆反応が理解の助けになるかもしれない。この反応では仮説上の素電荷の移動による分極では A/D と A−/D+ の分極エネルギーが等しくなる程度まで達するには十分ではない。
- ^ 置換反応などの通常の化学反応の場合、遷移状態はとても高い上側ポテンシャルエネルギー曲線上にあるため、これは無視される。
- ^ 核の移動を伴う断熱電子移動(この場合電子のジャンプではなく電荷の移動と捉えられる)の理論は Hush により作られた。
- ^ Rehm, D., Weller, A. "Kinetik und Mechanismus der Elektronenübertragung bei der Fluoreszenzlöschung in Acetonitril" Ber. Bunsenges.Physik.Chem. 1969, 73, 834-839 によれば、この振る舞いは経験式
- マーカス理論のページへのリンク