平衡点
微分方程式における平衡点(へいこうてん)とは、独立変数に依らず一定の値となる常微分方程式の解である。同じものは不動点、固定点、臨界点、休止点、特異点、停留点、静止点、危点、平衡解、定常解、定数解、静止解などの名でも呼ばれる[2]。英語では equilibrium point, fixed point, stationary solution, critical point, rest point などと呼ばれる[3]。力学系的視点では、平衡点とは時間が変化しても動かない相空間上の点を意味する。
平衡点は、微分方程式の解を理解する上で重要で、平衡点を調べることは、微分方程式の解の定性的な振る舞いを知りたいときの最初の手段である。問題の微分方程式が非線形系の場合、解析的な解が得られることはまれだが、非線形系であっても平衡点を求めることなら可能である。
数式では、微分方程式 dx/dt = f(x) において f(xe) = 0 を満たす xe が平衡点である。線形系あるいは線形近似された系の平衡点は、係数行列の固有値によって、平衡点近傍の解軌道が近づくか離れるかといった安定性の問題を判別できる。ハートマン・グロブマンの定理により、平衡点が双曲型平衡点であれば、非線形系の平衡点近傍の振る舞いと線形近似した系の平衡点近傍の振る舞いが、定性的に同じであることが保証されている。
定義と一般的性質
微分方程式の独立変数を t ∈ R とし、従属変数を x ∈ Rn とする。このとき、dx/dt が次のような t を陽に含まない自励的な常微分方程式で与えられているとする[4]。
f(xe) = 0 が代数的に解けるときは、平衡点 xe を式で書き表すことができる[16]。例えば、
平衡点 xe の十分近くの初期値を取る解が、全ての時刻 t において xe の近くに留まり続けるようなとき、その平衡点をリアプノフ安定であるという[25]。厳密に言うと、平衡点 xe がリアプノフ安定であるとは、 任意の定数 ε が与えられたときにある定数 δ が存在し、 ‖ x(0) − xe ‖ < δ を満たすような任意の解 x(t) ≠ xe が、全ての t で ‖ x(t) − xe ‖ < ε を満たすことをいう[26]。ここで、 ‖ · ‖ は相空間に定義されたノルムを表す。リアプノフ安定であるとき、単に安定であるともいう[27]。
一方、リアプノフ安定とは別の安定性の概念もある[26]。平衡点の近くにある初期点を取る解がその平衡点へ収束するとき、そのような平衡点を吸引的であるという[28]。厳密な定義では、平衡点 xe に対してある定数 δ が存在し、 ‖ x(0) − xe ‖ < δ を満たすような任意の解 x(t) ≠ xe が、t → ∞ のときにx(t) → xe を満たすことを吸引的という[26]。吸引的な平衡点は沈点とも呼ばれる[29]。
さらに、平衡点がリアプノフ安定なおかつ吸引的であるとき、漸近安定であるという[30]。誤解や混乱を生まないようであれば、漸近安定な平衡点を単に「安定な平衡点」と呼ぶこともある[31]。平衡点がリアプノフ安定であるが吸引的ではないときは、とくに中立安定な平衡点という[32]。
平衡点がリアプノフ安定ではないとき、あるいは平衡点がリアプノフ安定でも吸引的でもないとき、不安定であるという[33]。吸引的とは逆に、平衡点近傍の全ての初期値の解が時間経過に従って平衡点から離れるとき、そのような平衡点を反発的であるという[34]。反発的な平衡点は源点とも呼ばれる[29]。
線形系
問題が次のような定数係数の線形微分方程式であれば、全ての解を厳密に解くことができる[35]。