ジョルダン測度とは? わかりやすく解説

Weblio 辞書 > 辞書・百科事典 > 百科事典 > ジョルダン測度の意味・解説 

ジョルダン測度

(高次元体積 から転送)

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2024/12/11 03:09 UTC 版)

数学におけるペアノ-ジョルダン測度: Peano–Jordan measure)あるいはジョルダン測度ジョルダン容積: Jordan content)とは、有限次元における、複雑過ぎない図形(集合)の長さ面積体積に当たる「大きさ」(ある種の「容積」、いわば有限次元超体積高次元体積)を考えたもののことである。

またジョルダン測度の定義は、そのような容積が(折れ線や三角形台形球体のような図形がそうであるように)より複雑な図形に対しても厳密に定まるために満たされるべき、適当な条件(可測条件)を明らかにするものである。しかし、与えられた集合が(古典的な意味での「容積」としての)ジョルダン測度を持つには、それが極めて素直英語版な性質を持つ必要がある(それでも実用上現れる集合の多くはそれを満足する)ことが分かっており、したがってそのような集合はある意味では限定的である(それゆえ、ジョルダン測度をより大きな集合のクラスに対して拡張したルベーグ測度を用いるのが現在ではより一般的である)。

歴史的に言えば、ジョルダン測度が最初に現れるのは19世紀の終わりにかけてであり、歴史的経緯で「ジョルダン測度」(Jordan measure) の語はすでに浸透した用法となってはいるが、現代的な定義で言えば真の測度 (measure) ではない(ジョルダン可測な集合全体は完全加法族をなさない)ことに注意が必要である。例えば、一点集合 {x} (xR) は何れもジョルダン測度零であるが、そのような集合の可算和になる Q[0, 1] はジョルダン可測でない[注釈 1]。文献によっては[1] Jordan content(ジョルダン容積、有限加法的ジョルダン測度)の語(有限加法的測度の項も参照のこと)を用いるものがあるのは、そのような事情による。

ペアノ–ジョルダン測度の名称はその創始者としてのフランス人数学者カミーユ・ジョルダンおよびイタリア人数学者ジュゼッペ・ペアノ[2]に由来する。

線型汎函数としての「ジョルダン測度に関する(ルベーグ式の)積分」は(ルベーグ測度に関する(ルベーグ式の)積分がルベーグ積分であるというのと同じ意味で)リーマン積分である。

基本集合の測度

定義により、基本集合とは矩形の合併(重なってもよい)を言う。
矩形に重なりのある基本集合は重なりのない矩形の合併に分解しなおせる。

n次元ユークリッド空間 Rn で考える。初めに、左閉かつ右開な有界区間の直積集合

図の青い曲線で囲まれた領域が考える対象となる集合とする。この集合がジョルダン可測となる(つまり面積を持つ)ことの定義は、(図では緑で境界を表された図形のような)内側から近似する基本図形と(図では紫で境界を表された図形のように)外側から近似する基本図形を同時に考えるとき、それら内と外の二種類の基本図形のジョルダン測度(面積)がいくらでも近くなるようにできることである。

閉区間の直積集合




英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「ジョルダン測度」の関連用語

ジョルダン測度のお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



ジョルダン測度のページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアのジョルダン測度 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。

©2025 GRAS Group, Inc.RSS