逆格子空間
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2024/04/16 02:48 UTC 版)
![]() |
この記事は検証可能な参考文献や出典が全く示されていないか、不十分です。(2013年5月)
|

逆格子空間(ぎゃくこうしくうかん、英: reciprocal space)は逆格子ベクトルによって構成される空間のこと。実空間の周期性が反映される。逆空間、運動量空間、波数空間、k空間と言うこともある。
実空間と逆格子空間の関係は数学的にはフーリエ変換そのものであり、格子たとえば結晶の周期性を見ることができる。また物理的には位置と運動量、あるいは位置と波数の関係になっている。
光やX線の散乱は固体の結晶面の間隔とブラッグの法則で決まるが、逆格子空間を使うと便利なことがある。たとえば逆格子点の位置に光の強め合うスポットができるなど。
また固体中の電子の動きを見る場合、重要なのは位置よりも運動量の二乗に比例するエネルギーであるため、固体物理学での逆格子空間の用途は広い。
結晶では原子の周期的配列による並進対称性のため、一電子の固有関数(ブロッホ関数)、結晶格子の基準振動、そのほかの集団運動のモードなどが全て、波数で指定される平面波
- 逆格子空間のページへのリンク