ピカール=リンデレーフの定理
(解の存在と一意性の定理 から転送)
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2022/09/30 03:16 UTC 版)
数学の微分方程式論において、ピカール=リンデレーフの定理(Picard–Lindelöf theorem)、ピカールの存在定理(Picard's existence theorem)、コーシー=リプシッツの定理(Cauchy–Lipschitz theorem)、または解の存在と一意性の定理(かいのそんざいといちいせいのていり、existence and uniqueness theorem)とは、初期値問題の解が一意に存在するための十分条件を与える定理である。
定理の名前は、エミール・ピカール、エルンスト・レオナルド・リンデレーフ、オーギュスタン=ルイ・コーシー、ルドルフ・リプシッツに因む。
次の初期値問題を考える。
ポータル 数学 脚注
- ^ Coddington & Levinson (1955), Theorem I.3.1
- ^ Arnold, V. I. (1978). Ordinary Differential Equations. The MIT Press. ISBN 0-262-51018-9
- ^ Coddington & Levinson (1955), p. 7
- ^ Agarwal, Ravi P.; Lakshmikantham, V. (1993). Uniqueness and Nonuniqueness Criteria for Ordinary Differential Equations. World Scientific. p. 159. ISBN 981-02-1357-3
参考文献
- Coddington, Earl A.; Levinson, Norman (1955). Theory of Ordinary Differential Equations. New York: McGraw-Hill.
- Lindelöf, E. (1894). “Sur l'application de la méthode des approximations successives aux équations différentielles ordinaires du premier ordre”. Comptes rendus hebdomadaires des séances de l'Académie des sciences 116: 454–457 . (In that article Lindelöf discusses a generalization of an earlier approach by Picard.)
- Teschl, Gerald (2012). “2.2. The basic existence and uniqueness result”. Ordinary Differential Equations and Dynamical Systems. Graduate Studies in Mathematics. Providence, Rhode Island: American Mathematical Society. ISBN 978-0-8218-8328-0. ISSN 1065-7339. Zbl 1263.34002
外部リンク
- Cauchy-Lipschitz theorem at Encyclopedia of Mathematics.
- Fixed Points and the Picard Algorithm, recovered from http://www.krellinst.org/UCES/archive/classes/CNA/dir2.6/uces2.6.html.
- Proof of the Picard–Lindelöf theorem
- ピカール=リンデレーフの定理のページへのリンク