正百二十胞体とは? わかりやすく解説

Weblio 辞書 > 辞書・百科事典 > 百科事典 > 正百二十胞体の意味・解説 

正百二十胞体

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2020/03/25 19:42 UTC 版)

ナビゲーションに移動 検索に移動
正百二十胞体

正百二十胞体(せいひゃくにじゅうほうたい、: Regular hecatonicosachoron)とは、 四次元正多胞体の一種で120個の正十二面体からなる、三次元の正十二面体に相当する図形である。

構成要素

  • 胞(構成立体):正十二面体120個
  • 面:720枚の各正五角形に正十二面体2個が集まる。
  • 辺:1200本の各辺に正五角形3枚、正十二面体3個が集まる。
  • 頂点:600個の各頂点に辺4本、正五角形6枚、正十二面体4個が集まる。
  • 面、辺、頂点に集まる図形の数はそれぞれの形状により、線分の端点の数(パスカルの三角形の第3段)、正三角形の頂点と辺の数(第4段)、正四面体の頂点と辺と面の数(第5段)に等しい。
  • 双対正六百胞体
  • シュレーフリの記号:{5,3,3}

頂点座標

600個の頂点の座標は次の通り。ここで ϕ は黄金比 (1+√5)/2 である。

  • (0, 0, ±2, ±2) (複号任意)の全ての置換 24個
  • (±1, ±1, ±1, ±√5) (複号任意)の全ての置換 64個
  • (±ϕ−2, ±ϕ, ±ϕ, ±ϕ) (複号任意)の全ての置換 64個
  • (±ϕ−1, ±ϕ−1, ±ϕ−1, ±ϕ2) (複号任意)の全ての置換 64個
  • (0, ±ϕ−2, ±1, ±ϕ2) (複号任意)の全ての偶置換 96個
  • (0, ±ϕ−1, ±ϕ, ±√5) (複号任意)の全ての偶置換 96個
  • (±ϕ−1, ±1, ±ϕ, ±2) (複号任意)の全ての偶置換 192個



英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「正百二十胞体」の関連用語

正百二十胞体のお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



正百二十胞体のページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアの正百二十胞体 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。

©2025 GRAS Group, Inc.RSS