束_(射影幾何学)とは? わかりやすく解説

Weblio 辞書 > 辞書・百科事典 > 百科事典 > 束_(射影幾何学)の意味・解説 

束 (射影幾何学)

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2016/04/24 05:44 UTC 版)

数学とくに射影幾何学における(そく、: pencil, : faisceau[1])は、初めデザルグによって、与えられた特定の一点を通る直線全体の成す族を幾何学的対象として捉えたものを指すものとして用いられた。

束の典型的なものは、射影平面上の二つの曲線 C = 0, C' = 0 に対して二つの実数 λ, μ を助変数とする曲線族

として与えられる束である。この曲線の束に属する曲線は λμ との比 [λ : μ] ごとに一つ定まる。[λ : μ] を射影平面上の点の斉次座標と看做せば、対応する非斉次座標に関して C = 0 または C' = 0 のいずれか一方は無限遠にある。

円束の例: 円束 x² + y² + kx − (k + 4) = 0 に属する円をいくつかの k について示したもの。これらの円はすべて、円 x2 + y2 = 4 と直線 x = 1 との交点を通る。直線 x = 1 は無限遠点に対応するため、対応する k に有限な値は定まらない。

例えば二直線 C = 0, C' = 0 が有限領域内に交点を持てば、束 λC + μC' = 0 がその交点を通る直線の一群であることはすぐに判る。これを C, C' に関する直線束と呼ぶ。二直線の交点が無限遠にある(つまり二つの直線が平行である)とすれば、対応する直線束はその平行な二直線に平行な直線たちからなる。

また例えば、C = 0, C' = 0 が交点を持つ二つの円ならば、束 λC + μC' = 0 は二円の交点をとおる円の集まりであり、C, C' に関する円束という。

あるいは一般に

C0, …, Ck に関する k-次の束 (pencil of order k) と呼ぶ。

与えられた一直線を通る平面の全体の成す族である平面束はしばしば (fan) と呼ばれる[2]

注記

  1. ^ faisceau の英訳として sheaf がしばしば用いられる。また、faisceau (sheaf) の語はここで扱う概念とは異なる数学的対象に対しても用いられ、それは日本語ではと訳される。
  2. ^ 扇または扇形と訳すことが多いが、扇形 (sector) とはあまり関係はなく、換気扇やジェットエンジンのファンのようなブレードがぐるりとついているもののイメージからの命名のようである

外部リンク


「束 (射影幾何学)」の例文・使い方・用例・文例

Weblio日本語例文用例辞書はプログラムで機械的に例文を生成しているため、不適切な項目が含まれていることもあります。ご了承くださいませ。


英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「束_(射影幾何学)」の関連用語

束_(射影幾何学)のお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



束_(射影幾何学)のページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアの束 (射影幾何学) (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。
Tanaka Corpusのコンテンツは、特に明示されている場合を除いて、次のライセンスに従います:
 Creative Commons Attribution (CC-BY) 2.0 France.
この対訳データはCreative Commons Attribution 3.0 Unportedでライセンスされています。
浜島書店 Catch a Wave
Copyright © 1995-2025 Hamajima Shoten, Publishers. All rights reserved.
株式会社ベネッセコーポレーション株式会社ベネッセコーポレーション
Copyright © Benesse Holdings, Inc. All rights reserved.
研究社研究社
Copyright (c) 1995-2025 Kenkyusha Co., Ltd. All rights reserved.
日本語WordNet日本語WordNet
日本語ワードネット1.1版 (C) 情報通信研究機構, 2009-2010 License All rights reserved.
WordNet 3.0 Copyright 2006 by Princeton University. All rights reserved. License
日外アソシエーツ株式会社日外アソシエーツ株式会社
Copyright (C) 1994- Nichigai Associates, Inc., All rights reserved.
「斎藤和英大辞典」斎藤秀三郎著、日外アソシエーツ辞書編集部編
EDRDGEDRDG
This page uses the JMdict dictionary files. These files are the property of the Electronic Dictionary Research and Development Group, and are used in conformance with the Group's licence.

©2025 GRAS Group, Inc.RSS